Abstract:
A computer processor is disclosed. The computer processor may comprise a vector unit comprising a vector register file comprising at least one register to hold a varying number of elements. The computer processor may further comprise processing logic configured to operate on the varying number of elements in the vector register file using one or more complex arithmetic instructions. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A computer processor is disclosed. The computer processor may comprise a vector unit comprising a vector register file comprising at least one register to hold a varying number of elements. The computer processor may further comprise processing logic configured to operate on the varying number of elements in the vector register file using one or more complex arithmetic instructions. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A computer processor is disclosed. The computer processor may comprise a vector unit comprising a vector register file comprising at least one register to hold a varying number of elements. The computer processor may further comprise processing logic configured to operate on the varying number of elements in the vector register file using one or more graphics processing instructions. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A system and an accelerator circuit including a register file comprising instruction registers to store a trigonometric calculation instruction for evaluating a trigonometric function, and data registers comprising a first data register to store a floating-point input value associated with the trigonometric calculation instruction. The accelerator circuit further includes a determination circuit to identify the trigonometric calculation function and the floating-point input value associated with the trigonometric calculation instruction and determine whether the floating-point input value is in a small value range, and an approximation circuit to responsive to determining that the floating-point input value is in the small value, receive the floating-point input value and calculate an approximation of the trigonometric function with respect to the input value.
Abstract:
A system and an accelerator circuit including a register file comprising instruction registers to store an instruction for evaluating an elementary function, and data registers comprising a first data register to store an input value. The accelerator circuit further includes a successive cumulative rotation circuit comprising a reconfigurable inner stage to perform a successive cumulative rotation recurrence, and a determination circuit to determine a type of the elementary function based on the instruction, and responsive to determining that the input value is a fixed-point number, configure the reconfigurable inner stage to a configuration for evaluating the type of the elementary function, wherein the successive cumulative rotation circuit is to calculate an evaluation of the elementary function using the reconfigurable inner stage performing the successive cumulative rotation recurrence.
Abstract:
A computer processor is disclosed. The computer processor may comprise a vector unit comprising a vector register file comprising at least one register to hold a varying number of elements. The computer processor may further comprise processing logic configured to operate on the varying number of elements in the vector register file using one or more graphics processing instructions. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A computer processor comprising a vector unit is disclosed. The vector unit may comprise a vector register file comprising at least one register to hold a varying number of elements. The vector unit may further comprise a vector length register file comprising at least one register to specify the number of operations of a vector instruction to be performed on the varying number of elements in the at least one register of the vector register file. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A computer processor is disclosed. The computer processor comprises a vector unit comprising a vector register file comprising one or more registers to hold a varying number of elements. The computer processor further comprises processing logic configured to operate on the varying number of elements in the vector register file using one or more digital signal processing instructions. The computer processor may be implemented as a monolithic integrated circuit.
Abstract:
A computer processor is disclosed. The computer processor comprises one or more processor resources. The computer processor further comprises a plurality of hardware thread units coupled to the one or more processor resources. The computer processor may be configured to permit simultaneous access to the one or more processor resources by only a subset of hardware thread units of the plurality of hardware thread units. The number of hardware threads in the subset may be less than the total number of hardware threads of the plurality of hardware thread units.
Abstract:
A computer processor comprising a vector unit is disclosed. The vector unit may comprise a vector register file comprising at least one register to hold a varying number of elements. The vector unit may further comprise a vector length register file comprising at least one register to specify the number of operations of a vector instruction to be performed on the varying number of elements in the at least one register of the vector register file. The computer processor may be implemented as a monolithic integrated circuit.