摘要:
A photonic crystal waveguide having multiple guided modes, the waveguide comprising: a dielectric confinement region surrounding a waveguide axis, the confinement region comprising a photonic crystal having at least one photonic band gap, during operation the confinement region guides EM radiation in a first range of frequencies to propagate along the waveguide axis; a dielectric core region extending along the waveguide axis and surrounded by the confinement region about the waveguide axis; and a mode coupling segment comprising at least one bend in the waveguide axis, wherein during operation the mode coupling segment converts EM energy in a first guided mode to a second guided mode with a conversion efficiency greater than 10% for a frequency in the first range of frequencies.
摘要:
An optical waveguide including: a dielectric core region extending along a waveguide axis; and a dielectric confinement region surrounding the core about the waveguide axis, the confinement region comprising a photonic crystal structure having a photonic band gap, wherein during operation the confinement region guides EM radiation in at least a first range of frequencies to propagate along the waveguide axis, wherein the core has an average refractive index smaller than about 1.3 for a frequency in the first range of frequencies, and wherein the core a diameter in a range between about 4λ and 80λ, wherein λ is a wavelength corresponding to a central frequency in the first frequency range.
摘要:
An optical waveguide including: a dielectric core region extending along a waveguide axis; and a dielectric confinement region surrounding the core about the waveguide axis, the confinement region comprising a photonic crystal structure having a photonic band gap, wherein during operation the confinement region guides EM radiation in at least a first range of frequencies to propagate along the waveguide axis, wherein the core has an average refractive index smaller than about 1.3 for a frequency in the first range of frequencies, and wherein the core a diameter in a range between about 4 &lgr; and 80 &lgr;, wherein &lgr; is a wavelength corresponding to a central frequency in the first frequency range.
摘要:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
摘要:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
摘要:
A method for converting electromagnetic (EM) energy between guided modes of a photonic crystal waveguide having a waveguide axis, the method including: (i) providing the photonic crystal waveguide with a mode coupling segment comprising at least one bend in the waveguide axis, wherein during operation the mode coupling segment converts EM. energy in a first guided mode to a second guided mode; (ii) providing EM energy in the first guided mode of the photonic crystal waveguide; and (iii) allowing the EM energy in the first guided mode to encounter the mode coupling segment to convert at least some of the EM energy in the first guided mode to EM energy in the second guided mode.
摘要:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
摘要:
An optical waveguide having a working mode with a tailored dispersion profile, the waveguide including: (i) a dielectric confinement region surrounding a waveguide axis, the confinement region comprising a photonic crystal having at least one photonic bandgap, wherein during operation the confinement region guides EM radiation in a first range of frequencies to propagate along the waveguide axis; (ii) a dielectric core region extending along the waveguide axis and surrounded by the confinement region about the waveguide axis, wherein the core supports at least one guided mode in the first frequency range; and (iii) a dielectric dispersion tailoring region surrounded by the confinement region about the waveguide axis, wherein the dispersion tailoring region introduces one or more additional modes in the first range of frequencies that interact with the guided mode to produce the working mode.
摘要:
A gap-soliton structure is provided. The gap-soliton structure includes a cladding structure having alternating layers of different index values. A core region is interposed between the alternating layers of index values. The core or the cladding structure includes one or more nonlinear materials so as to achieve gap-soliton bistability.
摘要:
A new class of surface plasmon waveguides is presented. The basis of these structures is the presence of surface plasmon modes, supported on the interfaces between the dielectric regions and the flat unpatterned surface of a bulk metallic substrate. The waveguides discussed here are promising to have significant applications in the field of nanophotonics by being able to simultaneously shrink length, time and energy scales, allowing for easy coupling over their entire bandwidth of operation, and exhibiting minimal absorption losses limited only by the intrinsic loss of the metallic substrate. These principles can be used for many frequency regimes (from GHz and lower, all the way to optical).