摘要:
In a fluoride glass optical fiber with extremely small transmission loss for infrared light having a core layer and a clad layer each consisting mainly of ZrF.sub.4 - BaF.sub.2 - LaF.sub.3 - AlF.sub.3, NaF and H.sub.f F.sub.4 are used as additives to obtain a desired refractive index difference between the core layer and the clad layer. The mixing ratio of the NaF to the H.sub.f F.sub.4 satisfies the realtions;.vertline.0.25 .DELTA.H.sub.f F.sub.4 -3.DELTA.NaF.vertline..ltoreq.5,where .DELTA.NaF is the difference between the amount (mol %) of the N.sub.a F to be added to the core layer and that to be added to the clad layer, and .DELTA.H.sub.f F.sub.4 to be added to the core layer and that to be added to the clad layer.
摘要:
A method and apparatus is disclosed which ensures highly accurate control of the core-cladding diameter, enabling the fabrication of a preform for the single mode fiber. Moreover, glass refining steps for dehydration, the removal of compound ions, the reduction of the absorption loss by transition metals, etc. and preform manufacturing steps are combined into a series of steps, and the entire manufacturing process can be mechanized and automatically controlled; therefore, the yield rate of product is high and the industrial-scale productivity is also excellent.
摘要:
A fusion splicing method for optical fibers in which optical fibers are fusion spliced in an inert gas atmosphere after water adsorbed on their surfaces is removed by decomposition in a plasma of an inert gas containing a halogen.
摘要:
A fluoride glass for infrared optical transmission fiber is purified for dehydration and deoxidation to reduce transmission loss by reacting melted fluoride glass with NF.sub.3 gas at temperature between 500.degree. C. and 800.degree. C. No scattering loss is increased by the present purification as decomposed product in the reaction does not precipitate.
摘要:
A high-output, single fundamental transverse mode solid state laser is disclosed which uses a semiconductor laser array as an excitation light source. The solid state laser comprises: a laser element which includes a core containing an element added as a laser medium, a cladding containing no such laser medium element, and reflecting mirrors coated over the cladding surface for repeatedly reflecting incident excitation light so that it may repeatedly pass through the core; an excitation light source formed by semi-conductor laser or light emitting diode array; means for guiding the excitation light from the excitation light source to one side of the laser element for incidence thereto; and a resonator for the oscillation of the solid state laser.
摘要:
A high power laser transmitting fluoride glass fiber of an enhanced 2.94- .mu.m laser damage threshold value is disclosed, in which either of the core with a high refractive index and the cladding with a low refractive index is formed of fluoride glass which contains fluorine (F) as a component but has it substituted with 0 to 4.1 mol % of bromine (Br), chlorine (Cl), or bromine and chlorine. The optical fiber of the present invention may have its core formed of fluoride glass and its cladding formed of fluorine-contained resin, and the core glass has a composition that 70 to 80% of fluorine (F) is substituted with 0 to 4.1 mol % of bromine (Br), or chlorine (Cl), or bromine and chlorine.
摘要:
An optical beam diameter reducer for reducing a beam diameter of an optical beam comprises a three-layer structure composed of a central core, a refractive index inclined layer formed outside the core which refractive index gradually decreases toward the outside in the radial direction and a cladding layer formed outside the refractive index inclined layer.
摘要:
A silicon wafer includes a principal face for forming electronic devices; an end region; and a tapered region which is located between the principal face and the end region, in which the thickness of the silicon wafer is gradually reduced, and which has a slope that makes an angle of greater than zero degree and less than 9.5 degrees or an angle of greater than 19 degrees with the principal face. An SOI wafer prepared by forming a buried oxide layer in a silicon wafer includes a principal face, end region, and tapered region that are substantially the same as those described above. A method for manufacturing an SOI wafer includes the steps of implanting oxygen ions into a silicon wafer; and heat-treating the resulting silicon wafer such that a buried oxide layer is formed in the silicon wafer.
摘要:
This method for manufacturing a SIMOX wafer includes: heating a silicon wafer to 300° C. or more and implanting oxygen ions so as to form a high oxygen concentration layer within the silicon wafer; subjecting the silicon wafer to a cooling to less than 300° C. and an implanting of oxygen ions so as to form an amorphous layer; and subjecting the silicon wafer to a heat-treating in a mixed gas atmosphere containing oxygen so as to form a buried oxide layer. In the forming of the buried oxide layer, a starting temperature is less than 1350° C. and a maximum temperature is 1350° C. or more. This SIMOX wafer is manufactured by the above method and includes a BOX layer and a SOI layer on the BOX layer. The BOX layer has a thickness of 1300 Å or more and a breakdown voltage of 7 MV/cm or more, and the surface of the SOI layer and the interface between the SOI layer and the BOX layer have a roughness over a 10-μm square area of 4 Å rms or less.
摘要:
A SIMOX wafer having a BOX layer with a thin film thickness is obtained without a reduction in productivity or deterioration in quality. In a method for manufacturing a SIMOX wafer comprising: a step of forming a first ion-implanted layer in a silicon wafer; a step of forming a second ion-implanted layer that is in an amorphous state; and a high-temperature heat treatment step of maintaining the wafer in an oxygen contained atmosphere at a temperature that is not lower than 1300° C. but less than a silicon melting point for 6 to 36 hours to change the first and the second ion-implanted layers into a BOX layer, a gas containing chlorine that is not less than 0.1 volume % but less than 1.0 volume % is mixed into an atmosphere during temperature elevation in the high-temperature heat treatment.