Abstract:
Provided are a radio transmission device and a radio transmission method capable of improving downlink and uplink throughput even when performing dynamic symbol allocation. In the device and the method, BS and MS share a table correlating a basic TF as a combination of parameters such as TB size used for transmitting only user data, an allocation RB quantity, a modulation method, and an encoding ratio, with a derived TF having user data of different TB size by combining L1/L2 control information. Even when multiplexing L1/L2 control information, Index corresponding to the basic TF is reported from BS to MS.
Abstract:
A semiconductor device includes: a first nitride semiconductor layer; a second nitride semiconductor layer above the first nitride semiconductor layer and having a band gap larger than that of the first nitride semiconductor layer; a p-type nitride semiconductor layer above the second nitride semiconductor layer; two third nitride semiconductor layers of n-type above the second nitride semiconductor layer and located separately on either side of the p-type nitride semiconductor layer; and a first ohmic electrode above one of the two third nitride semiconductor layers and a second ohmic electrode above the other of the two third nitride semiconductor layers; and a gate electrode above the p-type nitride semiconductor layer. The second nitride semiconductor layer includes, in a region above which neither the p-type nitride semiconductor layer nor the two third nitride semiconductor layers is located, a surface layer including p-type impurities identical to those in the p-type nitride semiconductor layer.
Abstract:
A wireless communication base station device, terminal device, and method have reduced signaling while maintaining high scheduling gain. A judgment unit pre-stores a correspondence between the number of code words and the number of clusters to reduce the maximum value for the number of clusters allocated to each terminal as the number of code words increases, and thus determines the maximum value for the number of clusters based on the number of code words acquired. Based on the number of code words for a transmission signal from a terminal, an estimated value for the reception quality, and the maximum value for the number of clusters that is output by the judgment unit, a scheduling unit schedules the allocation of the transmission signal transmitted by each terminal to a transmission band frequency (frequency resource) so as not to exceed the maximum value for the number of clusters.
Abstract:
A nitride semiconductor device includes: a substrate; a first nitride semiconductor layer (1) located over the substrate; a second nitride semiconductor layer (2) located over the first nitride semiconductor layer (1), having a larger band gap than the first nitride semiconductor layer (1), and having a recess (11) penetrating into the first nitride semiconductor layer (1); and a third nitride semiconductor layer (12) continuously covering the second nitride semiconductor layer (2) and the recess (11), and having a larger band gap than the first nitride semiconductor layer (1); a gate electrode (5) located above a portion of the third nitride semiconductor layer (12) over the recess (11); and a first ohmic electrode (4a) and a second ohmic electrode (4b) located on opposite sides of the gate electrode (5).
Abstract:
A communication terminal eliminates collision of access request signals simultaneously transmitted from communication terminals in a local cell, prevents generation of interference signals in another cell adjacent to the local cell, and improves local cell throughput. A base station controls transmission power of the access permission signal so as to prevent generation of an interference signal in another cell adjacent to the local cell. A use sub-channel selection unit has a correspondence table between the reception quality of the pilot signals divided into classes and the sub-channel allocated to the classes. According to the table, the use sub-channel selection unit selects a sub-channel group of RACH correlated to the measurement result of the reception quality of the pilot signals reported from the reception quality measurement unit. One sub-channel to be used for transmission of the access request signal is selected at random from the sub-channel group selected.
Abstract:
Disclosed are an encoding ratio setting method and a radio communication device which can avoid encoding of control information at an encoding ratio lower than necessary and suppress lowering of the transmission efficiency of the control information. In the device, an encoding ratio setting unit (122) sets the encoding ratio R′control of the control information which is time-multiplexed with user data, according to the encoding ratio Rdata of the user data, ΔPUSCHoffset as the PUSCH offset of each control information, and ΔRANKoffset as the rank offset based on the rank value of the data channel using Expression (1). R control ′ = O Q ′ = max ( O ⌈ O 10 - Δ offset PUSCH + Δ offset RANK 10 · R data ⌉ , O 4 · M sc ) ( 1 ) Where ┌x┐ is an integer not greater than x, and max(x,y) is the greater one among X and Y.
Abstract:
Disclosed is a wireless communication base station device capable of reducing the power consumption of a terminal when broadband transmission is performed with only an uplink. With this device, a setting unit sets mutually different terminal IDs per a plurality of uplink unit bands for a terminal that communicates using a plurality of uplink unit bands and prescribed downlink unit bands which are fewer in number than the uplink unit bands; a control unit that respectively allocates resource allocation information per a plurality of uplink unit bands to a PDCCH arranged in a prescribed downlink unit band; and a PDCCH creation unit that creates a PDCCH signal by respectively masking the resource allocation information per a plurality of uplink unit bands with the terminal ID that has been set per a plurality of uplink unit bands.
Abstract:
A radio communication device capable of lightening the influence of a frequency selective fading in the wide-band transmission of a single carrier thereby to prevent deterioration of error rate characteristics. In this device, an FFT unit subjects a modulated signal inputted from a modulation unit to a Fourier transformation. A pilot insertion unit inserts a pilot symbol into a plurality of individual frequency components of the modulated signal. Weight multiplication units multiply the individual frequency components and the pilot symbols inserted into the individual frequency components, by weight coefficients set at a weight coefficient setting unit. IFFT units subject the frequency components to an inverse Fourier transformation, thereby to convert the frequency components into time domains.
Abstract:
A communication apparatus includes a first communication circuit, a second communication circuit, and a controller. The first communication circuit performs wireless communication with a gateway using a first communication system. The second communication circuit performs wireless communication with the gateway using a second communication system having a higher transmission speed than the first communication system. The controller is configured to activate the second communication circuit when the first communication circuit receives an activation request signal from the gateway, and to establish a link between the second communication circuit and the gateway when the first communication circuit receives a connection request signal from the gateway after the second communication circuit is activated.
Abstract:
In order to reduce interference between cells through hopping and use frequencies in a good propagation situation, a scheduler section carries out scheduling for determining to which user data should be sent using CQI from each communication terminal apparatus, selects a user signal to be sent in the next frame and determines in which subcarrier block the data should be sent. Au MCS decision section selects a modulation scheme and coding method from the CQI of the selected user signal. A subcarrier block selection section selects a subcarrier block instructed by the scheduler section 102 for each user signal. For the respective subcarrier blocks, FH sequence selection sections select hopping patterns. A subcarrier mapping section maps the user signal and control data to subcarriers according to the selected hopping pattern.
Abstract translation:为了在良好的传播情况下通过跳频和使用频率来减少小区之间的干扰,调度器部分执行用于确定应当使用来自每个通信终端装置的CQI发送哪个用户数据的调度,选择要发送的用户信号 并确定哪个子载波块应该发送数据。 Au MCS判定部从所选择的用户信号的CQI中选择调制方式和编码方式。 子载波块选择部选择由调度器部102指示的每个用户信号的子载波块。 对于各个子载波块,FH序列选择部分选择跳频模式。 子载波映射部分根据选择的跳频模式将用户信号和控制数据映射到子载波。