Abstract:
Method of scrambling signals, transmission point device, and user equipment using the method are provided. The method includes: sending an ID table to a user equipment through higher layer signaling, the ID table being a subset of the whole ID space and containing available IDs for the user equipment; notifying the user equipment an ID in the ID table to be used through physical layer signaling or UE specific higher layer signaling; generating a random seed based on the notified ID; initializing a scrambling sequence by the random seed; and scrambling the signals with the initialized scrambling sequence. The method of the disclosure, by combining physical layer signaling and higher layer signaling, may notify the used group ID and the blind detection space to a UE, wherein the blind detection for the UE is enabled and the signaling overhead is reduced.
Abstract:
A wireless communication system and a method for detecting downlink receiving power in the system are disclosed. N cells in the system respectively transmit data to at least one receiving terminal via N resource blocks using the same time-frequency resources; multiple channel state information reference signals (CSI-RSs) of a corresponding cell are set in each resource block, and orthogonality is maintained among the CSI-RSs of all the cells, wherein N is an integer greater than 1. Said method includes: an additional demodulation reference signal (DM-RS) used for indicating a receiving power is set in a puncture position in the resource block of the first cell which corresponds to a CSI-RS set in a resource block of another cell; and the receiving power of said first cell is detected according to said additional DM-RS. By using said method, the receiving power of a single cell in N cells can be detected, and the system overhead is not increased.
Abstract:
The present disclosure provides an orthogonal codes based code division multiplexing method of performing the code division multiplexing of demodulation reference signals in multiple layers of resource blocks by using orthogonal matrices, the method comprising: changing the order of chips in particular rows of a first orthogonal matrix to obtain a second orthogonal matrix with the changed order of chips; and multiplying the chips in respective rows of the second orthogonal matrix by the demodulation reference signals in corresponding layers of resource blocks correspondingly in the time direction to obtain code division multiplexing signals. The technical scheme of the present disclosure can improve the power jitter situation of downlink signals on the time, thereby the usage efficiency of the power amplifier at the base station side can be improved.
Abstract:
Method of scrambling signals, transmission point device, and user equipment using the method are provided. The method includes: sending an ID table to a user equipment through higher layer signaling, the ID table being a subset of the whole ID space and containing available IDs for the user equipment; notifying the user equipment an ID in the ID table to be used through physical layer signaling or UE specific higher layer signaling; generating a random seed based on the notified ID; initializing a scrambling sequence by the random seed; and scrambling the signals with the initialized scrambling sequence. The method of the disclosure, by combining physical layer signaling and higher layer signaling, may notify the used group ID and the blind detection space to a UE, wherein the blind detection for the UE is enabled and the signaling overhead is reduced.
Abstract:
The present disclosure provides a communication method that a base station configures different CSI-RS ports with different periodicity based on UE requirement (e.g. mobility) to reduce CSI-RS overhead. And another method is to transmit partial CSI-RS ports in a cyclic shifted manner to further reduce the overhead. In addition, cyclic shifted transmission of split CSI-RS port groups are proposed to reduce the potential big difference of interference onto different CSI-RS port groups.
Abstract:
The present disclosure provides a method of generating codebook in a wireless communication system with multiple antenna arrays, as well as a wireless communication system, base station and terminal using the codebook for communication. The method comprises steps of: providing a basic codebook which contains multiple pre-coding matrices; and assigning phase offsets to certain pre-coding matrices in the basic codebook to form a codebook with phase offset. The feedback overhead from a client to a base station side is reduced and a good precision of feedback for multi-antenna array is kept by applying the method of generating codebook and using the generated codebook in the wireless communication system, base station and terminal.
Abstract:
The present disclosure provides a method of generating codebook in a wireless communication system with multiple antenna arrays, as well as a wireless communication system, base station and terminal using the codebook for communication. The method comprises steps of: providing a basic codebook which contains multiple pre-coding matrices; and assigning phase offsets to certain pre-coding matrices in the basic codebook to form a codebook with phase offset. The feedback overhead from a client to a base station side is reduced and a good precision of feedback for multi-antenna array is kept by applying the method of generating codebook and using the generated codebook in the wireless communication system, base station and terminal.
Abstract:
The present disclosure provides a communication method of mapping CSI-RS ports to antenna units arranged in an antenna array system, a base station, and a user equipment, the communication method comprises steps of: selecting a group of antenna units to map to the CSI-RS ports in a first CSI-RS transmission period or a first frequency resource region; and selecting another group of antenna units to map to the CSI-RS ports in a second CSI-RS transmission period or a second frequency resource region. By the method, base station, and user equipment according to the present disclosure, each antenna unit would get a relatively fair opportunity for transmitting the CSI-RS signals or get a fairly good channel estimation performance in UE side.
Abstract:
The present disclosure provides a communication method that a base station configures different CSI-RS ports with different periodicity based on UE requirement (e.g. mobility) to reduce CSI-RS overhead. And another method is to transmit partial CSI-RS ports in a cyclic shifted manner to further reduce the overhead. In addition, cyclic shifted transmission of split CSI-RS port groups are proposed to reduce the potential big difference of interference onto different CSI-RS port groups.
Abstract:
The present disclosure provides an orthogonal codes based code division multiplexing method of performing the code division multiplexing of demodulation reference signals in multiple layers of resource blocks by using orthogonal matrices, the method comprising: changing the order of chips in particular rows of a first orthogonal matrix to obtain a second orthogonal matrix with the changed order of chips; and multiplying the chips in respective rows of the second orthogonal matrix by the demodulation reference signals in corresponding layers of resource blocks correspondingly in the time direction to obtain code division multiplexing signals. The technical scheme of the present disclosure can improve the power jitter situation of downlink signals on the time, thereby the usage efficiency of the power amplifier at the base station side can be improved.