Abstract:
A lighting device includes a thermal sensor, power converter circuits and a control circuit. The thermal sensor is configured to measure an internal temperature of a case. The power converter circuits are housed in the case and configured to be connected with different types of light sources, respectively. The control circuit is housed in the case and has priorities that are provided with respect to the different types of light sources according to their respective types. The control circuit is configured to, when the internal temperature is greater than a threshold, control the respective outputs of the power converter circuits so as to preferentially decrease an output for a light source corresponding to a first priority.
Abstract:
A moving-body light-emitting device for a vehicle includes: a light source including a light-emitting element; a substrate on which the light source is provided; a first lens that covers the light-emitting element and includes a curved surface that transmits light emitted from the light-emitting element, the curved surface including a first curved surface and a second curved surface; and a reflective surface that covers the first curved surface of the first lens and reflects the light transmitted through the first lens. The second curved surface of the first lens is not covered with the reflective surface, and transmits the light reflected by the reflective surface.
Abstract:
An impedance adjustment circuit varies an impedance of a transistor, thereby adjusting an impedance of a current path. A second control circuit controls a drive circuit to turn on or off at least one switch device of the switch devices while the impedance adjustment circuit is increasing the impedance of the current path. The impedance adjustment circuit adjusts the impedance of the current path to the minimum value after the drive circuit switches the at least one switch device from off to on or from on to off.
Abstract:
In a circuit device, a plurality of protection circuits are disposed between a plurality of first power supply connecting terminals and a first input terminal of a load circuit. A switching element of each of the plurality of protection circuits is connected between a first power supply connecting terminal and a first input terminal, and is turned on when a DC power supply is connected with a normal polarity to the first power supply connecting terminal. Each of the plurality of protection circuits a parasitic diode that is connected in parallel to the switching element between a corresponding first power supply connecting terminal and a first input terminal in a direction where a current having a normal polarity is caused to flow. The reset circuit performs periodically a reset operation of temporarily turning off the switching element.
Abstract:
A power supply device includes a DC power supply circuit configured to output DC power, and a ground-fault determining circuit configured to determine presence or absence of a ground fault at a post-stage of the DC power supply circuit. The ground-fault determining circuit includes a capacitor having an end that is connected with ground, and a diode including an anode and a cathode. The anode is connected with another end of the capacitor, and the cathode is connected with an output end on a high voltage side of the DC power supply circuit. The ground-fault determining circuit further includes a constant voltage source configured to charge the capacitor with a prescribed charging voltage, and a comparator as a determining portion configured to determine presence of the ground fault when a voltage across the capacitor falls below a prescribed determination reference voltage lower than the prescribed charging voltage.
Abstract:
In a lighting device, when determining that both of a first measuring value and a second measuring value are not an abnormal value, a controller is configured to control an output of a power converter based on the first and second measuring values. The first measuring value is a temperature inside a main body of the lighting device, sensed by a first temperature sensor. The second measuring value is a temperature of a light source, sensed by a second temperature sensor. When determining that at least one of the first and second measuring values is the abnormal value, the controller is configured to control the output of the power converter to another value that is different from a value of the output set based on the first and second measuring values.
Abstract:
A power supply device includes converters, a command circuit, and a setter. The converters correspond to loads. The command circuit controls the converters. The setter sets a magnitude of an output of at least one target converter of the converters in accordance with an output characteristic representing a relationship between an input voltage of the at least one target converter and an output limit value which is an upper limit value of the output from the at least one target converter. The output characteristic is a characteristic that the output limit value decreases as the input voltage lowers when the input voltage is lower than a threshold. The setter varies the threshold of the output characteristic in accordance with an operation status of the converters and sets the magnitude of the output from the at least one target converter in accordance with the output characteristic whose threshold has been varied.
Abstract:
The lighting device according to the present invention is used for lighting a light source device. The light source device includes a light source unit connected between first and second power supply terminals and a first impedance device which has an impedance associated with an electric property of the light source unit and is connected to the second power supply terminal. The lighting device performs a first process and a second process. In the first process, the lighting device obtains a measurement indicative of the impedance by supplying power to the first impedance device via the second power supply terminal while prohibiting output of DC power for lighting, and determine an operating condition based on the measurement. In the second process, the lighting device operates so that the DC power for lighting satisfies the operating condition.