Abstract:
Disclosed are a method for preparing a noble metal hydrogenation catalyst comprising preparing a carrier from a molecular sieve having a 10-member ring structure and/or an amorphous porous material; preparing a noble metal impregnation solution from one or more of compounds of noble metals Pt, Pd, Ru, Rh, Re, and Ir and deionized water or an acid solution; and preparing noble metal impregnation solutions in a concentration gradient ranging from 0.05 to 5.0 wt % with deionized water, and sequentially impregnating the carrier with the impregnation solutions from low to high concentrations during the carrier impregnation process, or preparing a noble metal impregnation solution at a low concentration ranging from 0.05 to 0.5 wt % and impregnating the carrier by gradually increasing the concentration of the noble metal impregnation solution to 2.0 to 5.0 wt % in the impregnation process, followed by homogenization, drying, and calcination, as well as a noble metal hydrogenation catalyst, use thereof, and a method for preparing lubricant base oil. The catalyst according to the present invention has high activity and stability, and the produced lubricant base oil shows a high viscosity index and a low pour point.
Abstract:
A hydrogenation method and distillate two-phase hydrogenation reactor in which the size of an upper space of the reactor is greater than that of a lower catalyst bed part. The reactor comprises 2 to 4 catalyst beds. An inner component for gas replenishment and for stripping a liquid-phase stream containing impurities is arranged between at least one adjacent catalyst bed and comprises a separator plate and exhaust pipes. The separator plate is provided with multiple downcomer through holes. The separator plate is connected with a plurality of exhaust pipes. The exhaust pipes are vertically arranged above the separator plate. The top parts of the exhaust pipes are in contact with the lower part of the upper catalyst bed.