Abstract:
The present application provides a treatment method and device for a waste plastic. A first aspect of the present application provides a treatment method for a waste plastic, including: firstly subjecting the waste plastic to a first pre-treatment to remove impurity and grease on a surface of the waste plastic, then subjecting the waste plastics to a second pre-treatment to convert a solid waste plastic into one in flow state; and finally, subjecting the waste plastic in flow state to a first cracking treatment and a second cracking treatment in sequence. Through the method provided in the present application, while cracking the waste plastic, chlorine element in the waste plastic may be removed by a multi-stage adsorption, which reduces chlorine content in the cracked oil, reduces pressure and burden in subsequent refining, and meets the limitation of the chlorine content in cracked products in downstream processes.
Abstract:
The present invention relates to a method for preparing a sulfur-resistant catalyst for aromatics saturated hydrogenation, comprising the steps of: preparing noble metal impregnation solutions from a noble metal and deionized water or an acid solution; impregnating a carrier with the impregnation solutions sequentially from high to low concentrations by incipient impregnation; homogenizing, drying, and calcinating to obtain the sulfur-resistant catalyst for aromatics saturated hydrogenation. The catalyst for aromatics saturated hydrogenation prepared by the method according to the present invention is primarily used in processing low-sulfur and high-aromatics light distillate, middle distillate, atmospheric gas oil, and vacuum gas oil. The method according to the present invention is advantageous in that the catalyst for aromatics saturated hydrogenation exhibits good hydrofining performance, superior aromatics saturation performance, high liquid yield of products, as well as excellent desulfurization and sulfur-resistance, and the catalyst has remarkable effects in use and a great prospect of application.
Abstract:
Disclosed are a method for preparing a noble metal hydrogenation catalyst comprising preparing a carrier from a molecular sieve having a 10-member ring structure and/or an amorphous porous material; preparing a noble metal impregnation solution from one or more of compounds of noble metals Pt, Pd, Ru, Rh, Re, and Ir and deionized water or an acid solution; and preparing noble metal impregnation solutions in a concentration gradient ranging from 0.05 to 5.0 wt % with deionized water, and sequentially impregnating the carrier with the impregnation solutions from low to high concentrations during the carrier impregnation process, or preparing a noble metal impregnation solution at a low concentration ranging from 0.05 to 0.5 wt % and impregnating the carrier by gradually increasing the concentration of the noble metal impregnation solution to 2.0 to 5.0 wt % in the impregnation process, followed by homogenization, drying, and calcination, as well as a noble metal hydrogenation catalyst, use thereof, and a method for preparing lubricant base oil. The catalyst according to the present invention has high activity and stability, and the produced lubricant base oil shows a high viscosity index and a low pour point.