Abstract:
An article, for example a solar cell, includes a first substrate having a first surface and a second surface. An underlayer is located over the second surface. A first conductive layer is located over the underlayer. An overlayer is located over the first conductive layer. A semiconductor layer is located over the conductive oxide layer. A second conductive layer is located over the semiconductor layer. The first conductive layer can include a conductive oxide and at least one dopant selected from the group consisting of tungsten, molybdenum, niobium, and/or fluorine. The overlayer can include a buffer layer having tin oxide and at least one of zinc, indium, gallium, and magnesium.
Abstract:
A method of making a coated article includes forming a first coating over a first surface of a substrate; and forming a second coating over a second surface of the substrate. The second coating includes a first conductive layer including tin oxide and at least one material selected from the group consisting of tungsten, molybdenum, and niobium.
Abstract:
A method of forming a coating layer on a glass substrate in a glass manufacturing process includes: providing a first coating precursor material for a selected coating layer composition to at least one multislot coater to form a first coating region of the selected coating layer; and providing a second coating precursor material for the selected coating layer composition to the multislot coater to form a second coating region of the selected coating layer over the first region. The first coating precursor material is different than the second precursor coating material.
Abstract:
A solar cell includes a first substrate having a first surface and a second surface. An underlayer is located over the second surface. A first conductive layer is located over the underlayer. An overlayer is located over the first conductive layer. A semiconductor layer is located over the conductive oxide layer. A second conductive layer is located over the semiconductor layer. The first conductive layer includes a conductive oxide and at least one dopant selected from the group consisting of tungsten, molybdenum, niobium, and/or fluorine.