摘要:
A method of making a reflective coated glass article includes providing a glass substrate. A first gaseous mixture is formed. The first gaseous mixture includes a silane compound and inert gas. The first gaseous mixture is delivered to a location above a major surface of the glass substrate to deposit a first coating layer directly on the major surface of the glass substrate. The first coating layer is deposited at a thickness of 5-50 nm. A second gaseous mixture is formed. The second gaseous mixture includes a silane compound, a radical scavenger and molecular oxygen. The second gaseous mixture is delivered to a location above the first coating layer. A second coating layer is deposited at a thickness of 5-50 nm over the first coating layer. The coated glass article exhibits a total visible light reflectance (Illuminant D65, ten degree observer) of 45% or more from a coated side of the coated glass article.
摘要:
A method of manufacturing a coated glass pane comprising the following steps in sequence a) providing a glass substrate, b) depositing by chemical vapour deposition (CVD) at least one CVD coating on a surface of the glass substrate using titanium tetraisopropoxide (TTIP) as a precursor, and c) depositing by physical vapour deposition (PVD) at least one PVD coating on said at least one CVD coating.
摘要:
A glass article includes a glass substrate having a first surface, a second surface, and an edge. At least one nanoparticle region is located adjacent at least one of the first surface and the second surface.
摘要:
A coated glass article includes a glass substrate and a pyrolytic coating deposited over the glass substrate. The coating includes a first inorganic metal oxide layer deposited over a major surface of the glass substrate. The first inorganic metal oxide layer includes titanium dioxide or tin oxide, has a refractive index of 1.8 or more, and is deposited at a thickness of 40 nm or less. A second inorganic metal oxide layer is deposited directly on the first inorganic metal oxide layer. The second inorganic metal oxide layer includes silicon dioxide and has a refractive index of 1.6 or less. A third inorganic metal oxide layer is deposited directly on the major surface of the glass substrate. The third inorganic metal oxide layer comprises silicon dioxide. The first inorganic metal oxide layer is deposited directly on the third inorganic metal oxide layer. The coated glass article exhibits a total visible light reflectance of 6.5% or less.
摘要:
The present invention provides low-E thin film optical stacks with improved optical and infrared reflecting properties and methods of making the same. More specifically, the present invention provides for a metal oxide thin film coating that exhibits lower emissivity values than its predecessor due to the inclusion of an oxidizer in the metal oxide deposition process, such as a strong acid such as nitric acid. The present invention also provides for a method that increases the coating efficiencies of the thin films described herein.
摘要:
The present invention relates to a method for forming a TiO2 thin film on a substrate by using an atmospheric pressure CVD method, in which a raw material gas contains titanium tetraisopropoxide (TTIP) and a chloride of a metal M vaporizable in a temperature range of 100 to 400° C. and the amount of the chloride of the metal M is from 0.01 to 0.18 as a concentration ratio to the titanium tetraisopropoxide (TTIP) (chloride of metal M (mol %)/TTIP (mol %)).
摘要:
The invention relates to: a glazing substrate, characterised in that it is equipped with a layer consisting of crystallites of at least 25 nm in size, directly covered with a layer consisting of crystallites of at most 10 nm in size; its manufacturing process; and its application to a low-E glazing unit or in solar control.
摘要:
A solar-control glass that has acceptable visible light transmission, absorbs near infrared wavelength light (NIR) and reflects midrange infrared light (low emissivity mid IR) along with a preselected color within the visible light spectrum for reflected light is provided. Also provided is a method of producing the improved, coated, solar-controlled glass. The improved glass has a solar energy (NIR) absorbing layer comprising tin oxide having a dopant such as antimony and a low emissivity control layer (low emissivity) capable of reflecting midrange infrared light and comprising tin oxide having fluorine and/or phosphorus dopant. A separate iridescence color suppressing layer as described in the prior art is generally not needed to achieve a neutral (colorless) appearance for the coated glass, however an iridescence suppressing layer or other layers may be combined with the two layer assemblage provided by the present invention. If desired, multiple solar control and/or multiple low emissivity layers can be utilized. The NIR layer and the low emissivity layer can be separate portions of a single tin oxide film since both layers are composed of doped tin oxide. A method of producing the coated solar control glass is also provided.
摘要:
In forming various types of insulating films in manufacture of a semiconductor device, carbon is gasified into CHx, COH etc. during film formation by adding active hydrogen and nitrogen oxide to reduce the carbon content during the film formation, and the effect of blocking impurities such as alkali metals is improved.
摘要:
The present invention relates to a method of depositing a coating comprising zinc oxide on a substrate; to a chemical vapour deposition precursor mixture for use in same and to a coated glass article and a photovoltaic cell prepared with a zinc oxide coating prepared using the method which comprises: providing a substrate, providing a precursor mixture comprising an alkyl zinc compound and a phosphorus source, the phosphorus source comprising a compound of formula OnP(OR)3, wherein n is 0 or 1 and each R is hydrocarbyl, and delivering the precursor mixture to a surface of the substrate.