Abstract:
An integrally bladed fan (IBF) rotor of a gas turbine engine. The IBF rotor includes a hub and a plurality of fan blades extending radially outwardly from the hub and integral therewith. The hub has a fan attachment flange disposed at an end of the hub on a trailing edge side thereof for mounting a booster rotor to a trailing edge side of the fan. The fan attachment flange is disposed at a radial distance from a longitudinal center axis of the integrally bladed fan rotor. The hub has an outer hub surface disposed radially inward from the radial distance of the fan attachment flange.
Abstract:
A gas turbine engine recuperator recuperator including exhaust passages providing fluid flow communication between an exhaust inlet and an exhaust outlet, the exhaust inlet being oriented to receive exhaust flow from a turbine of the engine and the exhaust outlet being oriented to deliver the exhaust flow to atmosphere, the exhaust passages having an arcuate profile in a plane perpendicular to a central axis of the recuperator to reduce a swirl of the exhaust flow. Air passages are in heat exchange relationship with the exhaust passages and providing fluid flow communication between an air inlet and an air outlet, design to sealingly respective plenum of the gas turbine engine.
Abstract:
The structural case has an annular body having a central axis and including a plurality of boss sections circumferentially interspaced from one another around the axis by a plurality of arcuate panel sections, each panel section having: two parallel arcuate structural flange members being axially interspaced from one another; a sheet metal wall extending between and interconnecting the two flange members; and at least one rib having an edge welded to the sheet-metal wall.
Abstract:
A method of diffusing and cooling an exhaust flow in an exhaust duct of a gas turbine engine includes circulating the exhaust flow from a turbine section of the gas turbine engine to a recuperator extending within the exhaust duct, circulating air discharged from a compressor section to a combustor of the gas turbine engine through air passages of the recuperator, and cooling and diffusing the exhaust flow by circulating the exhaust flow through exhaust passages of the recuperator having a progressively increasing cross-sectional area and in heat exchange relationship with the air passages.
Abstract:
A method of manufacturing a recuperator disposed in the exhaust duct of a gas turbine engine includes forming a first leading recess adjacent a leading edge of a first thermally conductive sheet and forming a second leading recess adjacent a leading edge of a second thermally conductive sheet, the first and second thermally conductive sheets forming components of a recuperator plate. The first leading recess of the first thermally conductive sheet is mated with the second leading recess of the second thermally conductive sheet, and then the first and second leading edges are joined thereby forming a recuperator plate. The first and second leading recesses form a trough extending along a leading edge of the recuperator plate in a direction substantially parallel to a longitudinal axis of the recuperator plate.
Abstract:
A steel soft wall fan case assembly according to one embodiment configured with a thin-walled steel support structure shell including a plurality of annular axial walls of thin sheet metal reinforced by a plurality of rings interconnecting axially adjacent annular axial walls. The steel support structure shell is structurally integrated with honeycomb materials and an annular metallic inner wall. A fabric containment layer may be wrapped around one of the annular axial walls of the steel support structure shell.
Abstract:
A method of installing a segment of a recuperator within an exhaust duct of a gas turbine engine, including positioning the segment such that its exhaust inlet is in fluid flow communication with the turbine section and its exhaust outlet is adapted to deliver an exhaust flow to atmosphere, engaging its air inlet to a plenum in fluid flow communication with the compressor discharge, and engaging its air outlet to another plenum containing the combustor. One of engaging the air inlet and engaging the air outlet includes forming a rigid connection providing sealed fluid flow communication with the corresponding plenum, and the other of engaging the air inlet and engaging the air outlet includes forming a floating connection providing sealed fluid flow communication with the corresponding plenum. The floating connection allows relative movement of the segment within the exhaust duct.
Abstract:
A bleed valve having a piston with a sealing member, the piston being displaceable between a first position to seal an aperture of a fluid conduit and an opposed second position spaced apart from the aperture to allow the working fluid therethrough. The bleed valve also has a guiding assembly with at least one guide wheel mounted to the piston and being displaceable therewith along a guide rail. The guide wheel has a guide groove extending inwardly from an outer rolling surface. The guide rail has a rail surface with a guide protrusion. The guide groove and the guide protrusion are complementary and in rolling contact with one another. The bleed valve also has a displacement mechanism for displacing the piston between the first and second positions. A compressor with a bleed valve and method for controlling bleeding of a working fluid are also discussed.
Abstract:
A method of assembling a starter/generator in a gas-turbine engine, including coupling a rotor and a stator of the starter/generator such that the rotor is rotatable with respect to the stator to drive the rotor when the starter/generator is electrically powered and to produce electrical power when the rotor is rotated, securing the stator to a bearing support, coupling the starter/generator to a low pressure shaft of the engine by installing the bearing support over a bearing assembly secured to an end of the low pressure shaft, inserting the low pressure shaft through a high pressure shaft of the engine with the end of the low pressure shaft protruding therefrom and positioning the starter/generator in proximity of an end of the high pressure shaft, and drivingly engaging the rotor to the high pressure shaft.
Abstract:
A method of manufacturing a recuperator segment uses metal tubes deformed into air cells in a waved configuration. The air cells are stacked one to another to form a double skinned recuperator segment providing cold air passages through the respective air cells and hot gas passages through spaces between adjacent air cells.