Abstract:
A radio frequency (RF) energy harvesting device (rectenna) includes an antenna structure configured to resonate at RF frequencies, and a rectifying circuit that facilitates harvesting multiband RF signals having low energy levels (i.e., tens of mW and below) by utilizing two Zero Bias Schottky diodes having different forward voltage and peak inverse voltage values. Positive voltage pulses from a captured RF signal generated on a first antenna end point are passed by the first diode to a first internal node where they are summed with a second RF signal generated on the second antenna end point (i.e., after being passed through a capacitor), thereby producing a first intermediate voltage having a substantially higher voltage level. Positive voltage pulses are then passed from the first internal node through the second diode to an output control circuit for conversion into a usable DC output voltage.
Abstract:
A metamaterial-based phase shifting element utilizes a variable capacitor (varicap) to control the effective capacitance of a metamaterial structure in order to control the phase of a radio frequency output signal generated by the metamaterial structure. The metamaterial structure is configured to resonate at the same radio wave frequency as an incident input signal (radiation), whereby the metamaterial structure emits the output signal by way of controlled scattering the input signal. A variable capacitance applied on metamaterial structure by the varicap is adjustable by way of a control voltage, whereby the output phase is adjusted by way of adjusting the control voltage. The metamaterial structure is constructed using inexpensive metal film or PCB fabrication technology including an upper metal “island” structure, a lower metal backplane layer, and a dielectric layer sandwiched therebetween. The varicap is connected between the island structure and a base metal structure that surrounds the island structure.
Abstract:
A radio frequency (RF) energy harvesting device including a scalable metamaterial resonator antenna and a rectifying circuit formed on a flexible plastic substrate. The metamaterial resonator antenna includes a metal (e.g., silver) structure that is conformally fixedly disposed (i.e., either printed or deposited/etched) on the flexible substrate and configured to resonate at RF frequencies using primary and secondary antenna segments connected by linking segments such that captured RF signals are generated at two antenna end points that are 180° out-of-phase with each other. The rectifying circuit including additional metal structures that are also printed or otherwise formed on the flexible substrate, and one or more circuit elements that are configured to pass positive voltage pulses from the captured RF signals to an output node. Various metamaterial resonator antenna configurations are disclosed.
Abstract:
A system for monitoring and analyzing the power consumption of a thermostat-controlled cycling appliance includes a detector configured to sample power consumption to obtain a power consumption time series having resolution sufficient to extract power cycle information for one or more individual components of a thermostat-controlled cycling appliance such as a refrigerator. An analyzer extracts the power cycle information from the sampled power consumption time series, compares the power cycle information to stored information of known power cycle characteristics and classifies the technology of one or more thermostat-controlled cycling appliance components based on comparison of the power cycle information to the stored information. The analyzer is further configured to generate an output that indicates the technology.
Abstract:
A lightweight deployable antenna assembly for, e.g., microsatellites including multifilar (e.g., quadrifilar) antenna (MHA) structures rigidly maintained in an array pattern by a lightweight linkage and collectively controlled by a central antenna feed circuit and local antenna feed circuits to perform phased array antenna operations. The linkage is preferably an expandable (e.g., flexural-scissor-grid) linkage capable of collapsing into a retracted/stowage state in which the MHA elements are maintained in a closely-spaced (e.g., hexagonal lattice close-packed) configuration optimized for payload storage. To deploy the antenna for operation, the linkage unfolds (expands) such that the MHA elements are moved away from each other and into an evenly spaced (e.g., wide-spaced hexagonal) pattern optimized for phased array operations. The MHA structures utilize modified helical filar elements including metal plated/printed on polymer/plastic beams/ribbons, or thin-walled metal tubes. The helical filar elements are radially offset (e.g., by 90°) and wound around a central axis.
Abstract:
A low-cost passive radiative cooling panel includes an emitter layer disposed under an upper reflective layer, where the emitter layer includes metamaterial nanostructures (e.g., tapered nanopores) configured to dissipate heat in the form of radiant energy that is transmitted through the reflective layer into cold near-space. In an embodiment the emitter layer includes ultra-black material configured to emit, with an emissivity close to unity, radiant energy having wavelengths/frequencies that fall within known atmospheric transparency windows (e.g., 8-13 μm or 16-28 μm). In a practical embodiment the emitter layer is formed using a modified Anodic Aluminum Oxide (AAO) self-assembly technique followed by electroless plating that forms metal-plated tapered nanopores. The reflective layer includes a distributed Bragg reflector configured to reflect at least 94% of incident solar light while passing the emitted radiant energy, and in some embodiments is implemented using a low-cost, commercially available solar mirror film.
Abstract:
A system is configured to remotely determine characteristics of a local operating environment of an outdoor condenser unit. The system includes a detector configured to sample power consumption of the condenser unit to obtain a sampled power consumption time series. An analyzer receives the sampled time series of the detector and determines characteristics of a local operating environment of the condenser unit from the power consumption time series. The analyzer generates an output that includes information about the local operating environment.
Abstract:
A passive radiative cooling system in which an ultra-black emitter includes metamaterial nanostructures disposed on the top surface of a metal sheet, and a conduit structure channels the flow of coolant against a bottom surface of the metal sheet. The metamaterial nanostructures (e.g., tapered nanopores) are configured to dissipate heat from the coolant in the form of emitted radiant energy having wavelengths/frequencies that fall within known atmospheric transparency windows (e.g., 8-13 μm or 16-28 μm), the emitted radiant energy being transmitted through a reflective layer into cold near-space. The ultra-black emitter is formed using a modified Anodic Aluminum Oxide (AAO) self-assembly technique followed by electroless plating that forms metal-plated tapered nanopores, and the reflective layer includes a distributed Bragg reflector. The cooling system is made scalable by way of modular cooling units (modules) that are configured for connection in series and parallel to form dry cooling systems suitable for large power plants.
Abstract:
Passive radiative cooling panels are produced by anodizing an aluminum foil sheet to form metamaterial nanostructures and then forming a plated metal over the metamaterial nanostructures to produce an ultra-black emitter, and then securing a reflective layer (e.g., a solar mirror film) onto the ultra-black emitter. The process is implementable in a roll-to-roll-type fabricating system in which a continuous aluminum foil ribbon extends from a feed roll through an anodization station to a reflector mounting station such that a first ribbon section undergoes anodization while a second ribbon section undergoes plating and a reflective layer is mounted onto a third ribbon section. A modified Anodic Aluminum Oxide (AAO) self-assembly technique is utilized to generate tapered nanopores that are then plated to generate an ultra-black emitter capable of generating broadband radiant energy with an emissivity close to unity. Modules are produced by mounting the panels onto conduit structures.
Abstract:
A device includes a phase shifting element array comprising a plurality of metamaterial structures that resonate in response to an input electromagnetic (EM) signal. The phase shifting element array generates an output EM signal that is a sum of component output electromagnetic signals generated respectively by the metamaterial structures and is configured to propagate wirelessly through at least a portion of a patient's body. A control circuit controls one or both of phases and amplitudes of the component electromagnetic output signals so that at least one of constructive and destructive interference between the component output electromagnetic signals causes the output signal to have a higher intensity EM radiation at a target region interior to the body and to have a zero or low intensity radiation at a non-target region interior to the body.