Abstract:
A wireless power transmission system includes a power transmitting device and a power receiving device. The power transmitting device includes: a first inverter circuit to output charging power to be directed to power transmission; a power transmitting antenna; and a first control circuit to control the first inverter circuit. The power receiving device includes: a power receiving antenna; and a trigger application circuit to apply, to detecting power to be supplied to the power receiving antenna, a trigger signal for informing of the power transmitting device of the presence of the power receiving device. Upon detecting the trigger signal, the first control circuit causes the first inverter circuit to begin outputting the charging power.
Abstract:
A solar cell module includes: a first solar cell; a second solar cell disposed apart from the first solar cell with a space therebetween; a first light reflector disposed on an edge portion of the first solar cell, and overlapping the space; and a second light reflector disposed on an edge portion of the second solar cell, and overlapping the space.
Abstract:
A solar cell module includes solar cells. encapsulants are layered on surfaces of the solar cells. A glass substrate is layered on the encapsulants. The solar cell module further includes an epoxy resin-containing member. Each encapsulant includes the ultraviolet ray-absorbing member. The ultraviolet ray-absorbing member sets the transmittance to 1% or less at the wavelengths ranging from 300 to 360 nm.
Abstract:
A power transmitting module includes a first electrode and a second electrode, which are a power transmitting electrode pair, and a matching circuit to be connected to the first and second electrodes. The matching circuit includes a first inductor connected to the first electrode, a second inductor connected to the second electrode, and a first capacitor. The first capacitor is connected between a wire between the first electrode and the first inductor and a wire between the second electrode and the second inductor. The power transmitting module further includes a second capacitor connected to the first inductor and a third inductor. The third inductor is connected between a wire between the first inductor and the second capacitor and a wire connected to the second inductor.
Abstract:
A power receiving device includes a power receiving antenna that receives AC power from a power transmitting antenna, a rectifier circuit that converts the AC power into DC power, a detection circuit that detects the DC power, a load driven by the DC power, a battery that charges the DC power, a switching circuit that provides i) connection and disconnection between the rectifier circuit and the load and ii) connection and disconnection between the load and the battery, and a control circuit that controls the power receiving device. The control circuit controls the switching circuit to disconnect the rectifier circuit from the load and connect the load to the battery if the DC power is less than or equal to a power threshold value, and drive the load by the DC power charged in the battery.
Abstract:
A wireless power transmission apparatus is provided for performing non-contact transmission of power by electromagnetic induction, and includes a power transmitter performing frequency conversion; a power transmitting antenna connected to the power transmitter; and a first resonance capacitor connected between the power transmitter and the power transmitting antenna, and resonating with the power transmitting antenna to pass the power transmission frequency of the power transmitter. The wireless power transmission apparatus includes a power receiving antenna arranged to oppose the power transmitting antenna; a power receiver connected to the power receiving antenna, and performing rectification and smoothing; and a second resonance capacitor connected between the power receiving antenna and the power receiver, and resonating with the power receiving antenna to pass the power transmission frequency of the power transmitter. The wireless power transmission apparatus includes a filter connected between the second resonance capacitor and the power receiver, and reflecting higher harmonics generated by the power receiver.
Abstract:
This wireless power transmission system includes: a power transmitting antenna and a power receiving antenna arranged to face each other and not to be in contact with each other; and an electromagnetic shield structure that includes a first shield and a second shield to house, in its inner space, the power transmitting and power receiving antennas facing each other. The first and second shields are configured to make first and second spaces to house the power transmitting and power receiving antennas, respectively. At least one of the first and second shields includes a protruding portion that is parallel to at least one of the power transmitting and power receiving antennas and that protrudes out of the shield sidewalls. Power is transmitted by a non-contact method through a radio frequency magnetic field from the power transmitting antenna to the power receiving antenna.
Abstract:
A solar cell module includes a first solar cell; and a light reflection member at least partially positioned on a side of the first solar cell in a first direction orthogonal to a thickness direction of the first solar cell. The light reflection member includes an insulating member and a conductive light reflection film on the insulating member in the thickness direction. A thickness of the light reflection member is larger than a thickness of the first solar cell, in the thickness direction.
Abstract:
A wireless power transmission apparatus is provided for performing non-contact transmission of power by electromagnetic induction, and includes a power transmitter performing frequency conversion; a power transmitting antenna; and a first resonance capacitor connected between the power transmitter and the power transmitting antenna, and resonating with the power transmitting antenna to pass the power transmission frequency of the power transmitter. The apparatus includes a power receiving antenna arranged to oppose the power transmitting antenna; a power receiver, and performing rectification and smoothing; and a second resonance capacitor connected between the power receiving antenna and the power receiver, and resonating with the power receiving antenna to pass the power transmission frequency of the power transmitter. The apparatus includes a filter connected between the second resonance capacitor and the power receiver, and reflecting higher harmonics generated by the power receiver.
Abstract:
An electrode unit is used in a power transmitting device or a power receiving device in a wireless power transmission system of an electric field coupling method. The electrode unit includes a first electrode and a second electrode, which are a power transmitting electrode pair or a power receiving electrode pair, and a matching circuit to be connected between a power conversion circuit and the first and second electrodes in the power transmitting device or the power receiving device. The matching circuit includes a first inductor connected to the first electrode, a second inductor connected to the second electrode, and a first capacitor. The first capacitor is connected between a wire between the first electrode and the first inductor and a wire between the second electrode and the second inductor. The first inductor and the second inductor are magnetically coupled together with a negative coupling coefficient.