摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of two or more small physical processor cores; at least one large physical processor core having relatively higher performance processing capabilities and relatively higher power usage relative to the small physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of two or more small physical processor cores to software through a corresponding set of virtual cores and to hide the at least one large physical processor core from the software.
摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of large physical processor cores to software through a corresponding set of virtual cores and to hide the set of small physical processor core from the software.
摘要:
A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a first set of one or more physical processor cores having first processing characteristics; a second set of one or more physical processor cores having second processing characteristics different from the first processing characteristics; virtual-to-physical (V-P) mapping logic to expose a plurality of virtual processors to software, the plurality of virtual processors to appear to the software as a plurality of homogeneous processor cores, the software to allocate threads to the virtual processors as if the virtual processors were homogeneous processor cores; wherein the V-P mapping logic is to map each virtual processor to a physical processor within the first set of physical processor cores or the second set of physical processor cores such that a thread allocated to a first virtual processor by software is executed by a physical processor mapped to the first virtual processor from the first set or the second set of physical processors.
摘要:
According to one embodiment, a processor includes a plurality of processor cores for executing a plurality of threads, a shared storage communicatively coupled to the plurality of processor cores, a power control unit (PCU) communicatively coupled to the plurality of processors to determine, without any software (SW) intervention, if a thread being performed by a first processor core should be migrated to a second processor core, and a migration unit, in response to receiving an instruction from the PCU to migrate the thread, to store at least a portion of architectural state of the first processor core in the shared storage and to migrate the thread to the second processor core, without any SW intervention, such that the second processor core can continue executing the thread based on the architectural state from the shared storage without knowledge of the SW.
摘要:
A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
摘要:
An intelligent power allocation architecture for a processor. For example, one embodiment of a processor comprises: a plurality of processor components for performing a corresponding plurality of processor functions; a plurality of power planes, each power plane associated with one of the processor components; and a power control unit (PCU) to dynamically adjust power to each of the power planes based on user experience metrics, workload characteristics, and power constraints for a current use of the processor.