Abstract:
Closed cellular elements (1) intended for use on the inside of an assembly (E) formed of a wheel with a rim (J) provided with an inflation valve (V), on which is mounted a tire (P), the said cellular elements (1) having walls formed from thin, flexible sheets (11, 12) impermeable to gas. The cellular elements contain a given amount of a chemical composition which is solid or liquid at ambient temperature, but which changes to the gaseous state by phase change or by the shift of a chemical equilibrium between 40° C. and 80° C.
Abstract:
A method for fitting tires (P) to a driving axle of a vehicle carrying heavy loads, which consists, after having determined the type of journey made by said vehicle, in: when the route is of type A (ascending under load with a driving torque and descending empty with a braking torque), fitting to each driving axle tires such that for each transverse groove (31) in the edge portions (B) of the tread (1), the angle of inclination of the rubber faces (310, 311) delimiting the transverse grooves (31) which first come into ground contact is smaller than the angle of inclination of the rubber face opposite delimiting the same transverse groove, or when the route is of type V (ascending empty and descending under load with a braking torque), fitting to each driving axle tires such that for each transverse groove (31) in the edge portions (B) of the tread, the angle of inclination of the rubber face (310, 311) delimiting said transverse groove which first comes into ground contact is larger than the angle of inclination of the rubber face opposite delimiting the same transverse groove. A tire (P) appropriate for implementing the method described.
Abstract:
A tread and tire for a multipurpose agricultural machine, that improves field traction while ensuring a satisfactory compromise with wear under engine torque and vibratory comfort on the road having a tread having a plurality of lugs distributed in a first row extending axially from a first axial end of the tread and in a second row extending axially from a second axial end of the tread, the second row differing from the first row by a symmetry relative to the equatorial plane of the tire followed by a rotation about the rotation axis of the tire, each row having an alternation of long lugs and of short lugs. The axially inner end face of a first long lug of a row of lugs is separated from the trailing lateral face of the second long lug of the symmetrical row of lugs, closest to the axially inner end face of the first long lug, by an end groove with a width at least equal to 10% and at most equal to 100% of the lug height.
Abstract:
A tread and tire for a multipurpose agricultural machine, that improves field traction while ensuring a satisfactory compromise with wear under engine torque and vibratory comfort on the road having a tread having a plurality of lugs distributed in a first row extending axially from a first axial end of the tread and in a second row extending axially from a second axial end of the tread, the second row differing from the first row by a symmetry relative to the equatorial plane of the tire followed by a rotation about the rotation axis of the tire, each row having an alternation of long lugs and of short lugs. The axially inner end face of a first long lug of a row of lugs is separated from the trailing lateral face of the second long lug of the symmetrical row of lugs, closest to the axially inner end face of the first long lug, by an end groove with a width at least equal to 10% and at most equal to 100% of the lug height.
Abstract:
A method for fitting tires (P) to a driving axle of a vehicle carrying heavy loads, which consists, after having determined the type of journey made by said vehicle, in: when the route is of type A (ascending under load with a driving torque and descending empty with a braking torque), fitting to each driving axle tires such that for each transverse groove (31) in the edge portions (B) of the tread (1), the angle of inclination of the rubber faces (310, 311) delimiting the transverse grooves (31) which first come into ground contact is smaller than the angle of inclination of the rubber face opposite delimiting the same transverse groove, or when the route is of type V (ascending empty and descending under load with a braking torque), fitting to each driving axle tires such that for each transverse groove (31) in the edge portions (B) of the tread, the angle of inclination of the rubber face (310, 311) delimiting said transverse groove which first comes into ground contact is larger than the angle of inclination of the rubber face opposite delimiting the same transverse groove. A tire (P) appropriate for implementing the method described.