摘要:
An apparatus for effecting base pair length separations of DNA fragments by matched ion paired chromatography comprising a separation column containing separation media having non-polar DNA separation surfaces, separation solution supply means, and a separation solution conduit communicating with the separation column and the separation solution supply means, and a cleaning solution valve means positioned in the separation solution conduit for injecting cleaning solution into the separation solution conduit. A process for cleaning the non-polar DNA separation surfaces in the apparatus comprising interrupting the flow of separation solvent with a block of cleaning solution injected into the flow of separation solution passing to the column, the cleaning solution containing agent which removes accumulated residues from the non-polar surface. The cleaning solution can have an alkaline pH and contain a chelating agent such as EDTA.
摘要:
An apparatus for effecting base pair length separations of DNA fragments by matched ion paired chromatography comprising a separation column containing separation media having non-polar DNA separation surfaces, separation solution supply means, and a separation solution conduit communicating with the separation column and the separation solution supply means, and a cleaning solution valve means positioned in the separation solution conduit for injecting cleaning solution into the separation solution conduit. A process for cleaning the non-polar DNA separation surfaces in the apparatus comprising interrupting the flow of separation solvent with a block of cleaning solution injected into the flow of separation solution passing to the column, the cleaning solution containing agent which removes accumulated residues from the non-polar surface. The cleaning solution can have an alkaline pH and contain a chelating agent such as EDTA.
摘要:
A Matched Ion Polynucleotide Chromatography method and system for size-based segregation of a mixture of RNA molecules. The method includes applying the mixture to a polymeric separation medium having non-polar surfaces and eluting the RNA molecules with a mobile phase which includes counterion reagent and an organic component. The preferred surfaces are characterized by being substantially free from multivalent cations which are free to interfere with RNA segregation. The elution is preferably performed at a temperature sufficient to denature the RNA. The method can be used in segregating RNA molecules having lengths in the range of about 100 to 20,000 nucleotides. Improved segregation is obtained using a chromatography column having an ID greater than about 5 mm. Examples of separation media include beads and monolithic columns.
摘要:
Non-polar polymeric separation media, such as beads or monoliths, are suitable for chromatographic separation of mixtures of polynucleotides when the surfaces of the media are unsubstituted or substituted with a hydrocarbon group having from one to 1,000,000 carbons and when the surfaces are substantially free from mutivalent cation contamination. The polymeric media provide efficient separation of polynucleotides using Matched Ion Polynucleolide Chromatography. Methods for maintaining and storing the polymeric media include treatment with multivalent cation binding agents.
摘要:
Non-polar polymeric separation media, such as beads or monoliths, are suitable for chromatographic separation of mixtures of polynucleotides when the surface of the media are unsubstituted or substituted with a hydrocarbon group having from one to 1,000,000 carbons and when the surfaces are substantially free from multivalent cation contamination. The polymeric media provide efficient separation of polynucleotides using Matched ion Polynucleotide Chromatography. Methods for maintaining and storing the polymeric media include treatment with multivalent cation binding agents.
摘要:
Non-polar polymeric separation media, such as beads or monoliths, are suitable for chromatographic separation of mixtures of polynucleotides when the surfaces of the media are unsubstituted or substituted with a hydrocarbon group having from one to 1,000,000 carbons and when the surfaces are substantially free from mutivalent cation contamination. The polymeric media provide efficient separation of polynucleotides using Matched Ion Polynucleotide Chromatography. Methods for maintaining and storing the polymeric media include treatment with multivalent cation binding agents.
摘要:
Non-polar polymeric separation media, such as beads or monoliths, are suitable for chromatographic separation of mixtures of polynucleotides when the surfaces of the media are unsubstituted or substituted with a hydrocarbon group having from one to 1,000,000 carbons and when the surfaces are substantially free from mutivalent cation contamination. The polymeric media provide efficient separation of polynucleotides using Matched Ion Polynucleotide Chromatography. Methods for maintaining and storing the polymeric media include treatment with multivalent cation binding agents.
摘要:
In one aspect, the invention provides a method for separating a mixture of polynucleotides, such as DNA or RNA, including (a) applying the mixture to a polymeric separation medium having non-polar surfaces, wherein the surfaces are characterized by being substantially free from multivalent cations, such as metal ions, which are free to interfere with polynucleotide separation, and (b) eluting the mixture with a mobile phase containing organic solvent and counter ion agent. In the separation of single-stranded polynucleotides, improved separation is obtained at a temperature effective to fully denature secondary structure within the polynucleotides.
摘要:
A batch process for obtaining polynucleotide fragments, such as dsDNA, having a selected size from a mixture of polynucleotide fragments including the steps of a) applying a solution of the mixture of polynucleotide fragments and a counterion agent to a binding medium having a hydrophobic surface; b) contacting the binding medium with a first stripping solvent and counterion agent, the first stripping solvent having a concentration of organic component sufficient to release from the binding medium all polynucleotide fragments having a size smaller than the selected size, and removing the first stripping solvent from the binding medium; and c) contacting the binding medium with a second stripping solvent having a concentration of organic component sufficient to release from the binding medium the polynucleotide fragments having the selected size, and removing the second stripping solvent from the binding medium. The binding medium can be organic polymer or inorganic particle beads. The mixture of polynucleotides can be the product of a PCR amplification. The binding medium can be contained within a column, a web or a container.
摘要:
A batch process for obtaining polynucleotide fragments, such as dsDNA, having a selected size from a mixture of polynucleotide fragments including the steps of a) applying a solution of the mixture of polynucleotide fragments and a counterion agent to a binding medium having a hydrophobic surface; b) contacting the binding medium with a first stripping solvent and counterion agent, the first stripping solvent having a concentration of organic component sufficient to release from the binding medium all polynucleotide fragments having a size smaller than the selected size, and removing the first stripping solvent from the binding medium; and c) contacting the binding medium with a second stripping solvent having a concentration of organic component sufficient to release from the binding medium the polynucleotide fragments having the selected size, and removing the second stripping solvent from the binding medium. The binding medium can be organic polymer or inorganic particle beads. The mixture of polynucleotides can be the product of a PCR amplification. The binding medium can be contained within a column, a web or a container.