摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
A method and apparatus for reducing the thermal induced errors in an IFOG system. The apparatus including a highly thermally conductive material configured to encapsulate a waveguide of an interferometric fiber optic gyroscope (IFOG). The highly thermally conductive material more evenly distributes thermal changes encountered by a sensing coil of the IFOG thereby substantially reducing errors in the IFOG system.
摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
Methods and apparatus for the active control of a wavelength-swept light source used to interrogate optical elements having characteristic wavelengths distributed across a wavelength range are provided.
摘要:
A large diameter optical waveguide, grating, and laser includes a waveguide 10 having at least one core 12 surrounded by a cladding 14, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension d2 of said waveguide being greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10. The waveguide 10 may be axially compressed which causes the length L of the waveguide 10 to decrease without buckling. The waveguide 10 may be used for any application where a waveguide needs to be compression tuned, e.g., compression-tuned fiber gratings and lasers or other applications. Also, the waveguide 10 exhibits lower mode coupling from the core 12 to the cladding 14 and allows for higher optical power to be used when writing gratings 16 without damaging the waveguide 10. The shape of the waveguide 10 may have other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one core may be used. The core and/or cladding 12,14 may be doped with a rare-earth dopant and/or may be photosensitive. At least a portion of the core 12 may be doped between a pair of gratings 50,52 to form a fiber laser or the grating 16 or may be constructed as a tunable DFB fiber laser or an interactive fiber laser within the waveguide 10. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.
摘要:
A fiber grating pressure sensor for use in an industrial process includes an optical sensing element 20,600 which includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light 14 is incident on the grating 12 and light 16 is reflected from the grating 12 at a reflection wavelength &lgr;1. The sensing element 20,600 may be used by itself as a sensor or located within a housing 48,60,90,270,300. When external pressure P increases, the grating 12 is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element 20,600 may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell 50. A temperature grating 270 may be used to measure temperature and allow for a temperature-corrected pressure measurement. The sensor may be suspended within an outer housing 112, by a fluid, spacers, or other means. The sensor may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
摘要:
A fiber Bragg grating based sensor is disclosed. The sensor comprises an optical waveguide having a core and a cladding. The core comprises a pressure sensor such as a fiber Bragg grating. In one embodiment, a support is affixed around the cladding which has two first portions each having a first diameter. The pressure sensor is located at a second portion of the support positioned between the two first portions which has a second smaller diameter, thus giving the sensor a “dog bone” shape. In another embodiment, the dog bone shape is imparted by positioning the pressure sensor at a portion of a waveguide having a reduced cladding diameter.
摘要:
A tunable external cavity semiconductor laser incorporating a tunable Bragg grating, including: a semiconductor gain medium; an elongated tuner housing having a tuner housing head and having a tuner housing foot, the tuner housing head and tuner housing foot being rigidly connected; a span of waveguide having a Bragg grating, for receiving the source light and for providing in turn the reflected light, and having a waveguide head and a waveguide foot, the waveguide head abutting the tuner housing head and the waveguide foot disposed toward the tuner housing foot; a piezoelectric crystal or other device or arrangement for providing a compressive force, disposed so as to abut the waveguide foot and also to abut the tuner housing foot, the means for applying a compressive force for exerting a compressive force on the span of waveguide along the direction of the axis of the span of waveguide, the compressive force being sufficient to alter the grating so as to affect the wavelength of light reflected by the grating. In some applications, the waveguide includes sections of different thicknesses, each having a sampled grating, the two sampled gratings being created so that at any given compressive force exerted by the piezoelectric crystal, the two gratings reflect at most one wavelength in common. The tunable laser in such an application therefore behaves as a stepped tunable laser.
摘要:
A single mode optical fiber, having a pure silica core and a cladding, and having a Bragg grating in along a length of some of the cladding, providing reflectivity in some of the cladding but not in the core, and a method for making same. Because the core is pure silica, it is unaffected by exposure to ultraviolet light, and so the process of imprinting a Bragg grating does not affect the refractive index of the core. The portion of the cladding in which the Bragg grating is to be imprinted is a glass containing an index-lowering dopant, such as fluorine, as well as a photosensitizing dopant, such as germanium. Exposure to ultraviolet light therefore forms a Bragg grating in a portion of the cladding, but not in the core, providing reflectivity in the cladding, but not in the core. A second portion of cladding can also be provided, surrounding the portion doped with the photosensitizing dopant. The second portion of cladding is an outer cladding, surrounding the doped portion, which abuts the core.