摘要:
Methods of forming structures that include InP-based materials, such as a transistor operating as an inversion-type, enhancement-mode device. A dielectric layer may be deposited by ALD over a semiconductor layer including In and P. A channel layer may be formed above a buffer layer having a lattice constant similar to a lattice constant of InP, the buffer layer being formed over a substrate having a lattice constant different from a lattice constant of InP.
摘要:
Methods of forming structures that include InP-based materials, such as a transistor operating as an inversion-type, enhancement-mode device. A dielectric layer may be deposited by ALD over a semiconductor layer including In and P. A channel layer may be formed above a buffer layer having a lattice constant similar to a lattice constant of InP, the buffer layer being formed over a substrate having a lattice constant different from a lattice constant of InP.
摘要:
An electrode with multiple metallic-layers structure formed by a magnetron sputtering technique for a semiconductor device and method for producing same is disclosed. The ceramic device includes at least one from selected group consisting of ZnO-MOV (metal oxide varistors), BaTiO3-PTC (positive temperature coefficient) thermistors, Mn3O4-NTC (negative temperature coefficient) thermistors, and capacitors. The multiple metallic-layers include a sputtered buffer layer and a sputtered electrical contact layer. The buffer layer includes at least one alloy selected form group consisting of NiCr (Ni from 50-90 wt %), TiNi (Ti from 40-60 wt %), and AlNi (Al from 40-70 wt %) and the thickness of this layer is from greater than zero to less than 100 nm. The electrical contact layer includes at least one of Cu, Ag, Pt, Au, or combination. More specifically, the electrode includes one of NiCr/Cu system, NiCr/Ag system, NiCr/Cu/Ag system, TiNi/Cu/Ag system, or AlNi/Cu/Ag system. The thickness ratio of the electrical contact layer to the intermetallic barrier layer is from 1 to 4.
摘要:
A circuit includes a negative differential resistance (NDR) device which includes a gate and a graphene channel, and a gate voltage source which modulates a gate voltage on the gate such that an electric current through the graphene channel exhibits negative differential resistance.
摘要:
A three-dimensional integrated circuit includes a semiconductor device, an insulator formed on the semiconductor device, an interconnect formed in the insulator, and a graphene device formed on the insulator.
摘要:
A circuit includes a negative differential resistance (NDR) device which includes a gate and a graphene channel, and a gate voltage source which modulates a gate voltage on the gate such that an electric current through the graphene channel exhibits negative differential resistance.
摘要:
Semiconductor nano pressure sensor devices having graphene membrane suspended over cavities formed in a semiconductor substrate. A suspended graphene membrane serves as an active electro-mechanical membrane for sensing pressure, which can be made very thin, from about one atomic layer to about 10 atomic layers in thickness, to improve the sensitivity and reliability of a semiconductor pressure sensor device.
摘要:
A three-dimensional integrated circuit includes a semiconductor device, an insulator formed on the semiconductor device, an interconnect formed in the insulator, and a graphene device formed on the insulator.
摘要:
An electrode with multiple metallic-layers structure formed by a magnetron sputtering technique for a semiconductor device and method for producing same is disclosed. The ceramic device includes at least one from selected group consisting of ZnO-MOV (metal oxide varistors), BaTiO3-PTC (positive temperature coefficient) thermistors, Mn3O4-NTC (negative temperature coefficient) thermistors, and capacitors. The multiple metallic-layers include a sputtered buffer layer and a sputtered electrical contact layer. The buffer layer includes at least one alloy selected form group consisting of NiCr (Ni from 50-90 wt %), TiNi (Ti from 40-60 wt %), and AlNi (Al from 40-70 wt %) and the thickness of this layer is from greater than zero to less than 100 nm. The electrical contact layer includes at least one of Cu, Ag, Pt, Au, or combination. More specifically, the electrode includes one of NiCr/Cu system, NiCr/Ag system, NiCr/Cu/Ag system, TiNi/Cu/Ag system, or AlNi/Cu/Ag system. The thickness ratio of the electrical contact layer to the intermetallic barrier layer is from 1 to 4.
摘要:
Semiconductor nano pressure sensor devices having graphene membrane suspended over open cavities formed in a semiconductor substrate. A suspended graphene membrane serves as an active electro-mechanical membrane for sensing pressure, which can be made very thin, from about one atomic layer to about 10 atomic layers in thickness, to improve the sensitivity and reliability of a semiconductor pressure sensor device.