摘要:
Methods of forming structures that include InP-based materials, such as a transistor operating as an inversion-type, enhancement-mode device. A dielectric layer may be deposited by ALD over a semiconductor layer including In and P. A channel layer may be formed above a buffer layer having a lattice constant similar to a lattice constant of InP, the buffer layer being formed over a substrate having a lattice constant different from a lattice constant of InP.
摘要:
Methods of forming structures that include InP-based materials, such as a transistor operating as an inversion-type, enhancement-mode device. A dielectric layer may be deposited by ALD over a semiconductor layer including In and P. A channel layer may be formed above a buffer layer having a lattice constant similar to a lattice constant of InP, the buffer layer being formed over a substrate having a lattice constant different from a lattice constant of InP.
摘要:
Fabrication of monolithic lattice-mismatched semiconductor heterostructures with limited area regions having upper portions substantially exhausted of threading dislocations, as well as fabrication of semiconductor devices based on such lattice-mismatched heterostructures.
摘要:
Non-silicon based semiconductor devices are integrated into silicon fabrication processes by using aspect-ratio-trapping materials. Non-silicon light-sensing devices in a least a portion of a crystalline material can output electrons generated by light absorption therein. Exemplary light-sensing devices can have relatively large micron dimensions. As an exemplary application, complementary-metal-oxide-semiconductor photodetectors are formed on a silicon substrate by incorporating an aspect-ratio-trapping technique.
摘要:
Methods and structures are provided for formation of devices on substrates including, e.g., lattice-mismatched materials, by the use of aspect ratio trapping and epitaxial layer overgrowth. A method includes forming an opening in a masking layer disposed over a substrate that includes a first semiconductor material. A first layer, which includes a second semiconductor material lattice-mismatched to the first semiconductor material, is formed within the opening. The first layer has a thickness sufficient to extend above a top surface of the masking layer. A second layer, which includes the second semiconductor material, is formed on the first layer and over at least a portion of the masking layer. A vertical growth rate of the first layer is greater than a lateral growth rate of the first layer and a lateral growth rate of the second layer is greater than a vertical growth rate of the second layer.
摘要:
Fabrication of monolithic lattice-mismatched semiconductor heterostructures with limited area regions having upper portions substantially exhausted of threading dislocations, as well as fabrication of semiconductor devices based on such lattice-mismatched heterostructures.
摘要:
Fabrication of monolithic lattice-mismatched semiconductor heterostructures with limited area regions having upper portions substantially exhausted of threading dislocations, as well as fabrication of semiconductor devices based on such lattice-mismatched heterostructures.
摘要:
Fabrication of monolithic lattice-mismatched semiconductor heterostructures with limited area regions having upper portions substantially exhausted of threading dislocations, as well as fabrication of semiconductor devices based on such lattice-mismatched heterostructures.
摘要:
Methods and structures are provided for formation of devices, e.g., solar cells, on substrates including, e.g., lattice-mismatched materials, by the use of aspect ratio trapping (ART) and epitaxial layer overgrowth (ELO). In general, in a first aspect, embodiments of the invention may include a method of forming a structure. The method includes forming a first opening in a masking layer disposed over a substrate that includes a first semiconductor material. A first layer, which includes a second semi-conductor material lattice-mismatched to the first semiconductor material, is formed within the first opening. The first layer has a thickness sufficient to extend above a top surface of the masking layer. A second layer, which includes the second semiconductor material, is formed on the first layer and over at least a portion of the masking layer. A vertical growth rate of the first layer is greater than a lateral growth rate of the first layer and a lateral growth rate of the second layer is greater than a vertical growth rate of the second layer.
摘要:
Methods and structures are provided for formation of devices, e.g., solar cells, on substrates including, e.g., lattice-mismatched materials, by the use of aspect ratio trapping (ART) and epitaxial layer overgrowth (ELO). In general, in a first aspect, embodiments of the invention may include a method of forming a structure. The method includes forming a first opening in a masking layer disposed over a substrate that includes a first semiconductor material. A first layer, which includes a second semi-conductor material lattice-mismatched to the first semiconductor material, is formed within the first opening. The first layer has a thickness sufficient to extend above a top surface of the masking layer. A second layer, which includes the second semiconductor material, is formed on the first layer and over at least a portion of the masking layer. A vertical growth rate of the first layer is greater than a lateral growth rate of the first layer and a lateral growth rate of the second layer is greater than a vertical growth rate of the second layer.