摘要:
Generally, the present disclosure is directed to methods for forming embedded stressor regions in semiconductor devices such as transistor elements and the like. One illustrative method disclosed herein includes forming a first material in first cavities formed in a first active area adjacent to a first channel region of a semiconductor device, wherein the first material induces a first stress in the first channel region. The method also includes, among other things, forming a second material in second cavities formed in a second active area adjacent to a second channel region of the semiconductor device, wherein the second material induces a second stress in the second channel region that is of an opposite type of the first stress in the first channel region, and wherein the first and second cavities are formed during a common etch process.
摘要:
Disclosed herein is a method of forming a semiconductor device. In one example, the method comprises forming a gate electrode structure above a semiconducting substrate and forming a plurality of spacers proximate the gate electrode structures, wherein the plurality of spacers comprises a first silicon nitride spacer positioned adjacent a sidewall of the gate electrode structure, a generally L-shaped silicon nitride spacer positioned adjacent the first silicon nitride spacer, and a silicon dioxide spacer positioned adjacent the generally L-shaped silicon nitride spacer.
摘要:
Disclosed herein is a method of forming a semiconductor device. In one example, the method comprises forming a gate electrode structure above a semiconducting substrate and forming a plurality of spacers proximate the gate electrode structures, wherein the plurality of spacers comprises a first silicon nitride spacer positioned adjacent a sidewall of the gate electrode structure, a generally L-shaped silicon nitride spacer positioned adjacent the first silicon nitride spacer, and a silicon dioxide spacer positioned adjacent the generally L-shaped silicon nitride spacer.
摘要:
In a P-channel transistor comprising a high-k metal gate electrode structure, a superior dopant profile may be obtained, at least in the threshold adjusting semiconductor material, such as a silicon/germanium material, by incorporating a diffusion blocking species, such as fluorine, prior to forming the threshold adjusting semiconductor material. Consequently, the drain and source extension regions may be provided with a high dopant concentration as required for obtaining the target Miller capacitance without inducing undue dopant diffusion below the threshold adjusting semiconductor material, which may otherwise result in increased leakage currents and increased risk of punch through events.
摘要:
In a replacement gate approach, the semiconductor material or at least a significant portion thereof in a non-transistor structure, such as a precision resistor, an electronic fuse and the like, may be preserved upon replacing the semiconductor material in the gate electrode structures. To this end, an appropriate dielectric material may be provided at least prior to the removal of the semiconductor material in the gate electrode structures, without requiring significant modifications of established replacement gate approaches.
摘要:
In a replacement gate approach, a spacer may be formed in the gate opening after the removal of the placeholder material, thereby providing a superior cross-sectional shape upon forming any electrode metals in the gate opening. Moreover, the spacer may be used for reducing the gate length, while not requiring more complex gate patterning strategies.
摘要:
In sophisticated semiconductor devices, different threshold voltage levels for transistors may be set in an early manufacturing stage, i.e., prior to patterning the gate electrode structures, by using multiple diffusion processes and/or gate dielectric materials. In this manner, substantially the same gate layer stacks, i.e., the same electrode materials and the same dielectric cap materials, may be used, thereby providing superior patterning uniformity when applying sophisticated etch strategies.
摘要:
In a stacked semiconductor device, a Peltier element may be incorporated as a distributed element so as to provide active heat transfer from a high power device into a low power device, thereby achieving superior temperature control in stacked device configurations. For example, a CPU and a dynamic RAM device may be provided as a stacked configuration, wherein waste heat of the CPU may be efficiently distributed into the low power memory device.
摘要:
When forming sophisticated high-k metal gate electrode structures, the removal of a dielectric cap material may be accomplished with superior process uniformity by using a silicon dioxide material. In other illustrative embodiments, an enhanced spacer regime may be applied, thereby also providing superior implantation conditions for forming drain and source extension regions and drain and source regions.
摘要:
In a replacement gate approach, the semiconductor material or at least a significant portion thereof in a non-transistor structure, such as a precision resistor, an electronic fuse and the like, may be preserved upon replacing the semiconductor material in the gate electrode structures. To this end, an appropriate dielectric material may be provided at least prior to the removal of the semiconductor material in the gate electrode structures, without requiring significant modifications of established replacement gate approaches.