Abstract:
A method for operating a tank for reducing agent, in particular aqueous urea solution, having a sensor with a first electrical contact and a second electrical contact, includes initially determining a conductance value for liquid reducing agent, a conductance value for frozen reducing agent and a conductance value for air in steps a.1) to a.3. A voltage is then applied between the first electrical contact and the second electrical contact in step b. A conductance value between the first electrical contact and the second electrical contact is then determined in step c. The conductance value determined in step c) is then compared to the conductance values determined in steps a.1) to a.3) and a determination is made as to if liquid reducing agent, frozen reducing agent, or air is present in step d). A motor vehicle in which the method is carried out, is also provided.
Abstract:
A method for operating a tank for reducing agent, in particular aqueous urea solution, having a sensor with a first electrical contact and a second electrical contact, includes initially determining a conductance value for liquid reducing agent, a conductance value for frozen reducing agent and a conductance value for air in steps a.1) to a.3. A voltage is then applied between the first electrical contact and the second electrical contact in step b. A conductance value between the first electrical contact and the second electrical contact is then determined in step c. The conductance value determined in step c) is then compared to the conductance values determined in steps a.1) to a.3) and a determination is made as to if liquid reducing agent, frozen reducing agent, or air is present in step d). A motor vehicle in which the method is carried out, is also provided.
Abstract:
A method for operating a reducing agent delivery device having a liquid reducing agent tank, an injector dispensing reducing agent into an exhaust treatment device, an internal combustion engine and a reducing agent line from tank to injector, includes conveying the reducing agent from tank to injector with a pump and providing a pressure sensor in the line. The method includes, repeatedly: determining and providing supply pressure for the injector in the delivery device with the pump, calculating an injector opening time from a determined injection volume and supply pressure and opening the injector at the calculated injector opening time. A venting procedure at a point in time includes: determining an increase of a pressure conveying volume characteristic in the delivery device, calculating an air bubble volume by comparing the increase to a target increase, and conveying a conveying volume through the injector. A motor vehicle is also provided.
Abstract:
A tank for a reducing agent includes a tank wall having an outer side and an interior at least partially delimited by the tank wall. A sensor is disposed at the tank wall and has a first electrical contact and a second electrical contact. The first electrical contact and the second electrical contact communicate in an electrically conductive manner with the interior, extend through the tank wall from the interior to the outer side of the tank wall and are disposed at a first spacing of less than 5 cm from one another. A motor vehicle having the tank is also provided.
Abstract:
A method for metering a reducing agent from a metering device to an exhaust gas treatment device includes initially determining at least one operating parameter of the metering device. An injector pressure at an injector for feeding the reducing agent into the exhaust gas treatment device is then calculated from the at least one operating parameter. Then, an opening time for the injector is calculated, in which at least the injector pressure determined in step b) is used. The injector is then opened for the opening time calculated in step c). A method for setting up or configuring a control unit for a metering device and a motor vehicle having a metering device are also provided.
Abstract:
A method for operating a delivery device for delivering a reducing agent from a reducing agent tank into an exhaust treatment device of an internal combustion engine of a motor vehicle, includes at least intermittently carrying out a ventilation process of the delivery device during operation of the internal combustion engine. A registration of a ventilation process first occurs. A timing unit having a preset time interval and/or a mass-flow summing unit having a preset total mass flow is then actuated. When the preset time interval and/or the preset total mass flow is reached, the ventilation process is then carried out. In particular, monitoring the delivery device by a pressure sensor can thus be omitted. A delivery device for delivering a reducing agent is also provided.
Abstract:
A method for determining an amount of liquid removed from a tank per unit time includes discontinuously feeding the liquid to exhaust gas of an internal combustion engine by at least feeding the liquid through an injection line into the exhaust gas, measuring pressures simultaneously at least at two points in the injection line and determining an amount of liquid fed in per unit time from the measured pressures. The amount of liquid removed between a first point in time and a second point in time is further derived by integrating the amounts of liquid removed per unit time over a period of time from the first point in time to the second point in time. The method allows the precise consumption of the liquid to be calculated and the remaining amount of liquid in the tank to be additionally determined. On-board diagnosis is further possible with the method.
Abstract:
A delivery device for delivering liquid reducing agent includes a reducing agent tank. At least a delivery unit, at least one first compensation element, a reducing agent line and a metering unit together have an overall volume to be filled with a reducing agent and are configured for delivering, conducting and metering the reducing agent from the reducing agent tank. The at least one first compensation element is configured for reducing the overall volume when a negative pressure occurs in the delivery device. A method for compensating freezing of a reducing agent in a delivery device and a motor vehicle having a delivery device, are also provided.
Abstract:
A device for producing electrical energy from the exhaust gas of an internal combustion engine, includes a generator with an exhaust gas inlet connection, an exhaust gas outlet connection and at least one heat exchange section therebetween. At least one flow diversion and/or flow division is provided between the exhaust gas inlet connection and the heat exchange section. The heat exchange section has a plurality of flow paths perpendicular to the exhaust gas inlet connection, to be assigned to a plurality of heat exchange units. At least a portion of the heat exchange assembly has at least one thermoelectric element and a cooling device. The at least one thermoelectric element is captively connected to the cooling device. A motor vehicle having the device is also provided.
Abstract:
An evaporation unit for producing a gas flow including ammonia, in particular in connection with an SCR system in motor vehicles, includes at least a housing, at least one meandering flow channel delimited by a closed wall and having an inlet and an outlet and at least one heat conductor disposed in a first evaporation section of the at least one flow channel coaxially between the housing and the wall. A device and a motor vehicle having the evaporation unit are also provided.