摘要:
A method for producing a wafer with a silicon single crystal substrate having a front and a back side and a layer of SiGe deposited on the front side, the method using steps in the following order: simultaneously polishing the front and the back side of the silicon single crystal substrate; depositing a stress compensating layer on the back side of the silicon single crystal substrate; polishing the front side of the silicon single crystal substrate; cleaning the silicon single crystal substrate having the stress compensating layer deposited on the back side; and depositing a fully or partially relaxed layer of SiGe on the front side of the silicon single crystal substrate.
摘要:
A method for producing a wafer with a silicon single crystal substrate having a front and a back side and a layer of SiGe deposited on the front side, the method using steps in the following order: simultaneously polishing the front and the back side of the silicon single crystal substrate; depositing a stress compensating layer on the back side of the silicon single crystal substrate; polishing the front side of the silicon single crystal substrate; cleaning the silicon single crystal substrate having the stress compensating layer deposited on the back side; and depositing a fully or partially relaxed layer of SiGe on the front side of the silicon single crystal substrate.
摘要:
A layered semiconductor substrate has a monocrystalline first layer based on silicon, having a first thickness and a first lattice constant a1 determined by a first dopant element and a first dopant concentration, and in direct contact therewith, a monocrystalline second layer based on silicon, having a second thickness and a second lattice constant a2, determined by a second dopant element and a second dopant concentration, and a monocrystalline third layer comprising a group III nitride, the second layer located between the first layer and the third layer, wherein a2>a1, wherein the crystal lattice of the first layer and the second layer are lattice-matched, and wherein the bow of the layered semiconductor substrate is in the range from −50 μm to 50 μm.
摘要:
A multilayer semiconductor wafer has a substrate wafer having a first side and a second side; a fully or partially relaxed heteroepitaxial layer deposited on the first side of the substrate wafer; and a stress compensating layer deposited on the second side of the substrate wafer. The multilayer semiconductor wafer is produced by a method including depositing on a first side of a substrate a fully or partially relaxed heteroepitaxial layer at a deposition temperature; and at the same temperature or before significantly cooling the wafer from the deposition temperature, providing a stress compensating layer on a second side of the substrate.
摘要:
A multilayer structure, comprises a substrate and a layer of silicon and germanium (SiGe layer) deposited heteroepitaxially thereon having the composition Si1-xGex and having a lattice constant which differs from the lattice constant of silicon, and a thin interfacial layer deposited on the SiGe layer and having the composition Si1-yGey, which thin interfacial layer binds threading dislocations, and at least one further layer deposited on the interfacial layer.
摘要:
A layered semiconductor wafer contains the following layers in the given order: a monocrystalline substrate wafer (1) containing substantially silicon, a first amorphous intermediate layer (2) of an electrically insulating material having a thickness of 2 nm to 100 nm, a monocrystalline first oxide layer (3) having a cubic Ia-3 crystal structure, a composition of (M12O3)1-x(M22O3)x wherein each of M1 and M2 is a metal and wherein 0≦x≦1, and a lattice constant which differs from the lattice constant of the material of the substrate wafer by 0% to 5%. The invention also relates to a process for manufacturing such semiconductor wafers by epitaxial deposition.
摘要翻译:分层半导体晶片按照给定的顺序包含以下层:基本上含有硅的单晶衬底晶片(1),具有2nm至100nm厚度的电绝缘材料的第一非晶中间层(2),第一单晶 具有立方体Ia-3晶体结构的氧化物层(3),(M 1 -O 2 O 3 O 3)1的组成 (2)其中M 1,M 2, / SUP>和M 2是金属,并且其中0≤x≤1,并且晶格常数不同于衬底晶片的材料的晶格常数0%至5%。 本发明还涉及通过外延沉积制造这种半导体晶片的方法。
摘要:
A layered semiconductor wafer contains the following layers in the given order: a monocrystalline substrate wafer (1) containing substantially silicon, a first amorphous intermediate layer (2) of an electrically insulating material having a thickness of 2 nm to 100 nm, a monocrystalline first oxide layer (3) having a cubic Ia-3 crystal structure, a composition of (M12O3)1-x(M22O3)x wherein each of M1 and M2 is a metal and wherein 0≦x≦1, and a lattice constant which differs from the lattice constant of the material of the substrate wafer by 0% to 5%. The invention also relates to a process for manufacturing such semiconductor wafers by epitaxial deposition.
摘要:
A multilayer semiconductor wafer has a substrate wafer having a first side and a second side; a fully or partially relaxed heteroepitaxial layer deposited on the first side of the substrate wafer; and a stress compensating layer deposited on the second side of the substrate wafer. The multilayer semiconductor wafer is produced by a method including depositing on a first side of a substrate a fully or partially relaxed heteroepitaxial layer at a deposition temperature; and at the same temperature or before significantly cooling the wafer from the deposition temperature, providing a stress compensating layer on a second side of the substrate.
摘要:
A multilayer semiconductor wafer has a substrate wafer having a first side and a second side; a fully or partially relaxed heteroepitaxial layer deposited on the first side of the substrate wafer; and a stress compensating layer deposited on the second side of the substrate wafer. The multilayer semiconductor wafer is produced by a method including depositing on a first side of a substrate a fully or partially relaxed heteroepitaxial layer at a deposition temperature; and at the same temperature or before significantly cooling the wafer from the deposition temperature, providing a stress compensating layer on a second side of the substrate.
摘要:
A process for epitaxially coating the front surface of a semiconductor wafer in a CVD reactor, the front surface of the semiconductor wafer being exposed to a process gas which contains a source gas and a carrier gas, and the back surface of the semiconductor wafer being exposed to a displacement gas, wherein the displacement gas contains no more than 5% by volume of hydrogen, with the result that diffusion of dopants out of the back surface of the semiconductor wafer, which is intensified by hydrogen, is substantially avoided. With this process, it is possible to produce a semiconductor wafer with a substrate resistivity of ≦100 mΩcm and a resistivity of the epitaxial layer of >1 Ωcm without back-surface coating, the epitaxial layer of which semiconductor wafer has a resistance inhomogeneity of