摘要:
The invention provides a method for visualisation of a 3-dimensional (3-D) scene model of a 3-D image, with a 3-D display plane comprising 3-D pixels by emitting and/or transmitting light into certain directions by said 3-D pixels, thus visualising 3-D scene points. The calculation of the 3-D image is provided such that said 3-D scene model is converted into a plurality of 3-D scene points, said 3-D scene points are fed at least partially to at least one of said 3-D pixels, said at least one 3-D pixel calculates its contribution to the visualisation of a 3-D scene point.
摘要:
A display system (100) for displaying images from different data streams (1,2) simultaneously is described. Images corresponding to the first data stream (1) are shown to a first observer (106) in a vehicle and images corresponding to the second data stream (2) are shown to a second observer (108) in the vehicle. The display system (100) comprises: a display screen (102) for generating a first one of the images and a second one of the images; and an optical selction screen (104) for selectively passing the first one of the images in a first direction (101) towards the first observer (106) and passing the second one of the images in a second direction (103) towards the second observer (108). It is advantageously that the display screen (102) generates images from both data streams (1,2).
摘要:
A multi-view autostereoscopic display device comprises: a backlight having a plurality of backlight areas arranged in a width direction of the display device; a spatial light modulator arranged over and in registration with the backlight, the spatial light modulator having an array of display forming elements arranged in rows and columns for modulating light received from the backlight; and a view forming layer arranged over and in registration with the spatial light modulator, the view forming layer having a plurality of view forming elements arranged in the width direction of the display device, each view forming element being configured to focus modulated light from adjacent groups of the display forming elements into a plurality of views for projection towards a user in different directions. The backlight is switchable to activate different ones of the backlight areas in different portions of a driving cycle of the display device so that, in the different portions of the driving cycle, modulated light from the active backlight areas is incident on each view forming element with respective different angles of incidence. In this way, the overall viewing angle or the effective three dimensional display resolution may be increased.
摘要:
A display device comprises a display arrangement having inherent non-uniformity of an output intensity across the display area and an optical attenuator arrangement (205,207) positioned in front of the display arrangement and in registration with the display area, wherein the optical attenuator arrangement has a light attenuation characteristic that varies across the display area and is adapted to optically reduce the inherent non-uniformity of the output intensity.
摘要:
An optical system that can add an optical depth information to a two-dimensional image (72) represented by substantially collimated light, e.g. by using a collimated light source in front of a LCD display. The optical system includes a first array of optical lenses (70) arranged at a first distance in front of the two-dimensional image (72), and a second array of optical lenses (71) arranged at a second distance in front of the two-dimensional image (72), the second distance being larger than the first distance. Optical properties, e.g. focal length, can be adjusted for the optical lenses of the first and second array of optical lenses (70, 71) in response to the optical depth information. The optical system can serve as an optical front for 3D multiview displays. Depending on embodiment, both horizontal and vertical angular resolution can be obtained, and the front end exhibits only a small brightness loss. Preferably one lens per pixel is used in case of a pixelized image. In one embodiment, a stack of several arrays of on/off switchable optical lenses are arranged at different distances in front of the two-dimensional image, wherein a depth is applied by turning on one lens corresponding to the desired depth distance. In another preferred embodiment two arrays of continuously adjustable lenses are used to generate a depth by adjusting the lenses so as to provide an apparent position in between the two arrays. Preferably, a diffuser is positioned in front of the second array of lenses. Different shapes of lenses may be used such as spherical lenses, lenticular lenses, Fresnel type lenses or “horse-saddle” shaped lenses. The arrays of lenses may be implemented using GRIN lenses or fluid-focus lenses. Preferably, the lenses of each array of lenses are individually adjustable.
摘要:
Disclosed in an image processing unit for generating, based on a plurality of input images, a first output image and a second output image, to be displayed on a stereoscopic display device, wherein a stereoscopic image and a monoscopic image can be displayed. The image processing unit including an offset calculator designed to calculate an offset image based on a first one of the input images, an addition unit designed to calculate the first output image by adding the offset image with a second one of the input images and a subtraction unit designed to calculate the second output image by subtracting the offset image from the second one of the input images.
摘要:
The stereoscopic display apparatus (300) comprises a source of illumination (101, 103) for emitting light, an imaging system (104) for imaging the source of illumination at a viewing region, a spatial light modulator (106) for modulating light from the source of illumination (101, 103) with two-dimensional images, and a control unit (108) for controlling a relative position of the “active” source of illumination (101, 103) related to the imaging system (104). The stereoscopic display apparatus (300) further comprises means to vary the relative position of the “active” source of illumination (101, 103) in three directions which are orthogonal to each other, without physically moving a light source (302-310) for inducing the source of illumination (101, 103) to emit light
摘要:
The present invention relates to a method and device (580) for encoding three-dimensional video data, the device comprising: a first encoder (505) arranged to encode multiple simultaneous views (501) of a scene from different viewpoints; a second encoder (510) arranged to encode depth information of the scene and a third encoder (515) arranged to encode additional information indicative of a relationship between the multiple views and the depth information and a combiner (520) arranged to combine the encoded information into a representation (513) of the three-dimensional video data. The additional information comprises a group classifier indicating whether or not the depth information and at least one of the multiple views correspond to the same source material for, when corresponding, using the depth information and the at least one of the multiple views to render further views of the scene from further different viewpoints. The invention further related to a method and device (585) for decoding three-dimensional video data, as well as a computer program product comprising program instructions for executing a method according to the present invention.
摘要:
The invention provides a system (102) for accurately detecting a patient's (114) movement during imaging procedures. The system comprises a camera (126) for providing a stream of camera images of a part of a patient's exterior (206). The system (102) furthermore comprises a fiducial element (116), which fiducial element (116) is mountable on said part of the patient's exterior (206), and which fiducial element (116) is detectable in the stream of camera images, and an image processor (128) for detecting a displacement of the fiducial element based on consecutive camera images comprised in at least the stream of camera images and for generating an output signal (129) indicative for said displacement. Herein, the fiducial element (116) has an in-plane stiffness which is substantially larger than an in-plane stiffness of said part of the patient's exterior. In addition, the fiducial element (116) and said part of the patient's exterior are provided with substantially equal outer in-plane dimensions.
摘要:
A method of generating a depth map (122) comprising depth values representing distances to a viewer, for respective pixels of an image (100), is disclosed. The method comprises: determining a contour (106) on basis of pixel values of the image (100), the contour comprising a collection of adjacent points; computing curvature vectors (108 114) at a number of the points; and assigning a first one of the depth values corresponding to the first one of the pixels on basis of the curvature vectors (108-114).