摘要:
Polling using B-ACK for occasional back-channel traffic in VoWIFI applications. Within wireless communication systems having a relatively asymmetric channel (e.g., relative more downstream traffic than upstream), certain upstream communications (e.g., acknowledgments (ACKs) and/or block acknowledgments (B-ACKs)) include indication therein (e.g., piggybacked therein) that a given downstream located communication device desires/needs to make upstream communication. In some instances, specificity is also provided therein to indicate the type of information to be transmitted upstream. Such a communication protocol mitigates (or eliminates) contention between upstream and downstream traffic in an environment with significantly more downstream traffic (e.g., such as ongoing downstream traffic that may include streaming video). A coordinating device (e.g., access point (AP)) may employ such upstream provided indicia to coordinate upstream and downstream communications within the wireless communication system in a non-contentious manner that does not deleteriously affect ongoing downstream traffic.
摘要:
Polling using B-ACK for occasional back-channel traffic in VoWIFI applications. Within wireless communication systems having a relatively asymmetric channel (e.g., relative more downstream traffic than upstream), certain upstream communications (e.g., acknowledgments (ACKs) and/or block acknowledgments (B-ACKs)) include indication therein (e.g., piggybacked therein) that a given downstream located communication device desires/needs to make upstream communication. In some instances, specificity is also provided therein to indicate the type of information to be transmitted upstream. Such a communication protocol mitigates (or eliminates) contention between upstream and downstream traffic in an environment with significantly more downstream traffic (e.g., such as ongoing downstream traffic that may include streaming video). A coordinating device (e.g., access point (AP)) may employ such upstream provided indicia to coordinate upstream and downstream communications within the wireless communication system in a non-contentious manner that does not deleteriously affect ongoing downstream traffic.
摘要:
A wireless access device transmits encoded media streams to at least first and second clients over a shared wireless channel. First and second transmission windows are established in a transmission frame interval for transmission of media packets to the first and second clients, respectively. An unused portion of one of the transmission windows is identified using, for example, transmission status information (from the wireless access device) associated with the media packets. The unused portion of the transmission window is adaptively reallocated for use in transmission of media packets associated with the other transmission window. In one mode of operation, the reallocation process may trigger a reversal in the order of the first and second transmission windows in subsequent transmission frame intervals.
摘要:
Dynamic wireless channel selection and protocol control for streaming video utilizing transmission delay/packet loss information and channel utilization statistics. A transmission delay and packet loss monitor generates transmission delay information during the transmission of a video stream to remote wireless device(s) over a first wireless channel by timestamping and monitoring video packet(s) and associated transmission acknowledgement(s). The transmission delay information is compared to a predetermined threshold (e.g., a maximum tolerated delay threshold and/or total packet loss threshold) and, if the threshold is exceeded, a second wireless channel is selected for continued transmission of the video stream. In one mode, channel utilization statistics are likewise examined prior to a channel relocation event. Selection of the second wireless channel may be accomplished through a random or semi-random channel selection process, or through active scanning to collect clear channel assessment statistics for candidate channels. In another mode, at least one transmission protocol parameter is altered in response to a violation of one or more of the predetermined thresholds.
摘要:
Synchronized calibration for wireless communication devices. A protocol is presented herein that allows for calibration operation(s) by one or more wireless communication devices to mitigate (or eliminate) the disruption caused to the communication medium thereby. A calibration announcement frame is provided by a wireless communication device intending to perform calibration operation(s), and respective receiving wireless communication devices may adaptively determine whether to perform a calibration operation based thereon. In response to a calibration announcement frame, one or more other wireless communication devices may also perform calibration operation(s) (e.g., in accordance with a group calibration event, simultaneously, etc.) or may perform some operations as to minimize any effects that may be incurred during such a calibration operation(s) (e.g., enter into some robust operational mode, power savings mode, etc.). Such a calibration announcement frame may indicate respective time slots (e.g., maintenance window) during which respective wireless communication devices may perform calibration operation(s).
摘要:
Adaptive wireless channel allocation in a multi-user environment based on quality of received video streams. During the transmission of encoded media streams from a wireless access device to at least first and second video devices over a wireless channel, transmission windows are allocated in shared transmission frame intervals for transmission of media packets to the first and second video devices, respectively. Relative priorities are set/adjusted for the video devices based, at least in part, on one or more of the following: channel estimation information, reception characteristics, transmission acknowledgment information, video device characteristics and/or user feedback. The relative priorities are utilized to adaptively (re)allocate at least one portion of the transmission frame intervals. In addition to channel reallocation, the prioritization of devices may be utilized to adaptively alter the encoding bit rate of one or more media streams.
摘要:
Point to multi-point wireless video delivery. Among a group of receiver wireless communication devices (RXs), one is designated (e.g., as acknowledgment (ACK) leader). Media delivery operational parameters are selected based on the designated RX or based on all or a subset of the RXs. For simultaneous media delivery to multiple RXs, characteristics associated with the designated RX [or all, or a subset or RXs] govern the manner by which communications are made. Different respective RXs may be designated to serve in this role at different times. Wireless delivery of media (e.g., video signaling, audio signaling, etc.) to a group of RXs is effectuated in accordance with modified multicast signaling with a designated leader (e.g., ACK leader). Among a group of devices, a least successful receiving device that still receives media at an acceptable level may be chosen as the designated leader (e.g., ACK leader).
摘要:
Video sub-reservation protocol in a wireless ecosystem. Appropriate access is provided to a number of wireless communication devices to ensure very high performance and a high perceptual user experience with respect to media related content communications. Access to the communication medium (e.g., air within a wireless location system) is provided to various wireless communication devices in a manner as to minimize collisions and contention. In one instance, different respective access assignment periods are sub-divided to give respective communication medium access to various devices within the system. Such sub-reservation may be adaptive in response to any of a number of considerations (e.g., traffic, device processing history, etc.). Also, such sub-reservation may provide respective time specificity at or during which certain devices may conduct communications, but may also specify any other operational parameters (e.g., which frequency spectra to use, duration of such communications, modulation coding set (MCS) to use, etc.).
摘要:
Navigation system employing augmented labeling and/or indicia. Various embodiments provide very accurate and timely information to a user thereby minimizing the amount of time or effort that a user will need to interpret or translate any information and/or directions provided thereby. In one instance, a vehicular based navigational system, which can operate with one or more projectors, provides information to a user such that the user need not turn away from the actual field of vision (e.g., 3D, 2D, etc.). Labeling and/or indicia is/are projected within the actual field of vision of the navigation system user. In another instance, labeling and/or indicia are overlaid or included within photographic and/or video information corresponding to an environment depicted by the navigation system. Such a navigation system may be implemented within a variety of contexts including within a vehicle, within a handheld/portable device, within a headset/eyeglasses device, etc.
摘要:
Adaptive video encoding based on predicted wireless channel conditions. Based on at least one of a number of transmitter side indications of the available throughput of a wireless channel for video delivery, an encoder rate adaptation mechanism generates an estimate of the supportable throughput of the wireless channel under different operating conditions. An encoding parameter, such as encoder bit rate, is subsequently altered based on the estimated throughput value. In one instance, transmitter side throughput indicia is used to generate target encoder bit rates for multiple potential PHY data rates/channel MCS selections that may be used in video delivery. In anticipation of or immediately following a transition to one such PHY data rate/MCS selection, the encoder bit rate is altered in accordance with an associated target bit rate. In another mode, average transmit queue latency information is used to further regulate the encoder bit rate.