摘要:
The present invention relates to a method for determining or predicting the response of a patient diagnosed with locally advanced rectal cancer to chemoradiotherapy. The present invention also aims to provide methods and devices for predicting the response of patients diagnosed with rectal cancer to specific medicaments, radiotherapy and/or chemotherapy. More specifically, the present invention provides methods which measure kinase activity by studying phosphorylation levels and profiles in samples of said patients.
摘要:
The present invention relates to a method for determining or predicting the response of a patient diagnosed with locally advanced rectal cancer to chemoradiotherapy. The present invention also aims to provide methods and devices for predicting the response of patients diagnosed with rectal cancer to specific medicaments, radiotherapy and/or chemotherapy. More specifically, the present invention provides methods which measure kinase activity by studying phosphorylation levels and profiles in samples of said patients.
摘要:
The present invention relates to methods for identifying classification markers for tumors by monitoring the activity of protein kinases. By acquiring a phosphorylation profile of diseased and control tissue samples the method of the present invention provides classification procedures using phosphorylation patterns enabling the distinction between different types and/or sub-types of tumors. Specific classification markers for tumors can be identified enabling tumor classification, diagnosis, prognosis and/or prediction of the clinical outcome of a therapy.
摘要:
The present invention relates to a method for determining or predicting the response of a patient diagnosed with non small cell lung cancer to targeted pharmacotherapy. The present invention also aims to provide methods and devices for predicting the response of patients diagnosed with non small cell lung cancer to specific medicaments. More specifically, the present invention provides methods which measure kinase activity by studying phosphorylation levels and profiles and inhibitions thereof by drugs in samples of said patients.
摘要:
The present invention relates to a method for determining the survival prognosis of patients suffering from non-small cell lung cancer. More specifically, the present invention provides methods which measure kinase activity by studying phosphorylation levels in response to a kinase inhibitor and profiles in samples obtained from patients diagnosed with non-small cell lung cancer. The present invention also provides methods for predicting the response of a patient diagnosed with non-small cell lung cancer to a medicament.
摘要:
The present invention relates to a method for determining the survival prognosis of patients suffering from non-small cell lung cancer. More specifically, the present invention provides methods which measure kinase activity by studying phosphorylation levels in response to a kinase inhibitor and profiles in samples obtained from patients diagnosed with non-small cell lung cancer. The present invention also provides methods for predicting the response of a patient diagnosed with non-small cell lung cancer to a medicament.
摘要:
The present invention relates to the use of endogenous protein kinase activity in cerebrospinal fluid for the classification, diagnosis and prognosis of neurological and psychiatric disorders as well as for predicting and monitoring treatment effects. An array of substrates for protein kinases, immobilized on a porous matrix, is used to monitor the protein kinase activity in cerebrospinal fluid. The method of the present invention enables the early diagnosis and discrimination between neurodegenerative disorders.
摘要:
Solid porous supports find use in array analysis, as they offer high surface area for contacting the analyzed sample. The present invention provides a solid porous support suitable for array analysis having first and second surfaces, and comprising channels extending from said first surface to said second surface, characterised in that at least one conductive material is applied to predefined regions on said first surface and/or on said second surface and/or inside the channels contained within said solid porous support. Such conductive material(s) may form a high-precision grid delineating physically distinct compartments within the support and thus reduce the risk of cross-contamination in array analysis. Additionally, such conductive material(s) may directly participate in reactions performed on the array by means of their electrical and/or thermal conductivity.