Abstract:
This disclosure provides systems, methods, and apparatus for generating images on a multi-primary display. A multi-primary display can include control logic that provides sets of subframe slots for displaying color subfields of an image frame. Each set includes a fixed number of subframe slots, which can be used for displaying any or all image subframes output by the display. The control logic can evaluate the image frame to determine which one of the sets of subframe slots to assign to each of the color subfields used to display the image frame. For example, the control logic can display the image frame using red (R), green (G), blue (B) and white (W) color subfields. The control logic determines which set of subframe slots to assign each subfield based on relative luminances of the color subfields within the image frame.
Abstract:
This disclosure provides systems, methods and apparatus for providing multi-level multi-state shutter assemblies. The shutter assembly includes at least a first shutter at a first height over a substrate and a second shutter at a second height over the substrate. Both the first shutter and the second shutter can be operated in an open or closed state for passing or partially blocking light propagating through an aperture. In some implementations, the shutter assembly can operate in four states: a fully transmissive state, a fully obstructive state and two partially transmissive states based on the open or closed states of the first and second shutters.
Abstract:
This disclosure provides systems, methods, non-transitory computer readable storage media, and apparatus for displaying images using hue-based frame-specific contributing colors (FSCCs). In one aspect, an input is configured to receive image data corresponding to a current image frame. Contributing color selection logic is configured, based on received image data, to obtain a set of FSCCs for use in conjunction with a set of frame-independent contributing colors (FICCs) to generate the current or a subsequent image frame on a display. The set of FSCCs are obtained from determining the dominant hues in the image frame. The image frame is displayed such that subframes associated with displaying the FSCCs have weights that are greater than the subframes associated with displaying the FICCs.
Abstract:
This disclosure provides systems, methods and apparatus for image displays incorporating color selective reflectors. The display apparatus includes a substantially monochromatic light source capable of outputting a substantially monochromatic light. The display apparatus incorporates a color conversion material capable of converting at least a portion of the substantially monochromatic light output by the substantially monochromatic light source into light associated with at least one subfield color. The display device also includes a plurality of pixels, each pixel including at least two color-selective reflectors, each color-selective reflector being capable of passing light of a respective subfield color and reflecting light associated with at least two other subfield colors.
Abstract:
This disclosure provides systems, methods and apparatus for a laser-pumped phosphor backlight for display devices. In one aspect, a display includes a laser backlight configured to emit light, a plurality of phosphors that emit light at a respective wavelength when stimulated by light emitted by the laser backlight, and a waveguide including a diffraction grating positioned between the laser backlight and the plurality of phosphors. In some implementations, the diffraction grating may be configured to direct the light emitted by the laser backlight at a different intensity for each of the plurality of phosphors. For example, the diffraction grating may direct the light at different intensities for each of the plurality of phosphors by generating a diffraction pattern such that the light emitted by the laser backlight is distributed at different relative intensities for each of the plurality of phosphors.
Abstract:
This disclosure provides systems, methods, non-transitory computer readable storage media, and apparatus for displaying images using hue-based frame-specific contributing colors (FSCCs). In one aspect, an input is configured to receive image data corresponding to a current image frame. Contributing color selection logic is configured, based on received image data, to obtain a set of FSCCs for use in conjunction with a set of frame-independent contributing colors (FICCs) to generate the current or a subsequent image frame on a display. The set of FSCCs are obtained from determining the dominant hues in the image frame. The image frame is displayed such that subframes associated with displaying the FSCCs have weights that are greater than the subframes associated with displaying the FICCs.
Abstract:
This disclosure provides systems, methods and apparatus for improving power efficiency of display devices. Control logic of a display device can use content adaptive backlight control (CABC) for displaying certain image frames with reduced illumination intensity. CABC can be used to determine a scaling factor for scaling up pixel values in an image frame and for scaling down the illumination intensity of a backlight used for illuminating the image frames. The control logic can determine a number of image subframes that have been rendered imperceptible to the human visual system (HVS) due to the reduced illumination intensity of the backlight, and refrain from displaying the determined number of image subframes. The control logic can utilize the additional time made available as a result of not displaying the determined number of subframes to further improve the power efficiency of the display device and/or improve image quality.
Abstract:
This disclosure provides systems, methods, non-transitory computer readable media and apparatus for improving power efficiency of display devices. Control logic of a display device can reduce a number of subframes used to display a series of image frames. In some implementations, the control logic can detect a scene change in the series of image frames and reduce the number of subframes utilized for displaying a following image frame. Subsequently, the control logic can monotonically increase the number of subframes utilized for displaying a first set of successive image frames. In some implementations, the control logic may monotonically increase the number of subframes for a first set of image frames and then monotonically decrease the number of subframes for a second set of image frames.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying images using a frame-specific contributing color (FSCC). In one aspect, an input is configured to receive image data corresponding to a current image frame. Contributing color selection logic is configured, based on received image data, to obtain a FSCC for use in conjunction with a set of frame-independent contributing colors (FICCs) to generate the current image frame on a display. In addition, subframe generation logic is configured to process the received image data for the current image frame to generate at least two subframes for each of the FICCs and the obtained FSCC such that an output by the display of the generated subframes results in the display of the current image frame.
Abstract:
This disclosure provides systems, methods, and apparatus for generating images on a multi-primary display. A multi-primary display can include control logic that converts input image data into the multi-primary color space employed by the display by mapping the input pixel values into an intermediate color space according to a gamut mapping function and then decomposing the mapped pixel values into color subfields associated with the display's primary colors. The control logic can be configured to identify a lossy gamut mapping saturation parameter value to use in the gamut mapping process which results in a power-saving desaturated image that is perceived by the Human Visual System (HVS) as substantially maintaining its color fidelity.