Abstract:
An improved polymerization method including a method comprising providing a reaction mixture comprising a first monomer, an organic oxidant, and at least one Lewis acid or Brönsted acid, wherein the first monomer comprises at least one optionally substituted heterocyclic ring, wherein the heterocyclic ring comprises at least one heteroatom; and reacting the reaction mixture to obtain a conjugated polymer. The method can reduce the content of undesirable entities in the polymer such as halogens and metals, which can be useful in organic electronic device applications. Purification methods also are adapted to remove organic and inorganic impurities.
Abstract:
A method including combining at least one first compound in a neutral form with at least one ionic dopant in a first solvent system to provide a first doped reaction product, isolating the first doped reaction product in solid form, and combining the isolated first doped reaction product with at least one conjugated polymer in neutral form in a second solvent system to form a second doped reaction product including an oxidized form of the conjugated polymer a neutral form of the first compound. Advantages include better stability, ease of use, and lower metal content. Applications include organic electronic devices including OLEDs.
Abstract:
A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
Abstract:
Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
Abstract:
A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
Abstract:
Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
Abstract:
Compositions comprising at least one hole transport material, such as a conjugated polymer, and at least one dopant, providing improved thermal stability. Compositions can be applied to substrates and used in HIL and HTL layers and organic electronic devices such as light emitting devices such as OLEDs or OPVs. The conjugated polymer can be a polythiophene, including a 3,4-substituted polythiophene or a regioregular polythiophene. The dopant can be a silver salt such as silver tetrakis(pentafluorophenyl)borate. Improved methods of making dopant are provided.
Abstract:
Conducting polymer systems for hole injection or transport layer applications including a composition comprising: a water soluble or water dispersible regioregular polythiophene comprising (i) at least one organic substituent, and (ii) at least one sulfonate substituent comprising sulfonate sulfur bonding directly to the polythiophene backbone. The polythiophene can be water soluble, water dispersible, or water swellable. They can be self-doped. The organic substituent can be an alkoxy substituent, or an alkyl substituent. OLED, PLED, SMOLED, PV, and ESD applications can be used.
Abstract:
An improved polymerization method including a method comprising providing a reaction mixture comprising a first monomer, an organic oxidant, and at least one Lewis acid or Brönsted acid, wherein the first monomer comprises at least one optionally substituted heterocyclic ring, wherein the heterocyclic ring comprises at least one heteroatom; and reacting the reaction mixture to obtain a conjugated polymer. The method can reduce the content of undesirable entities in the polymer such as halogens and metals, which can be useful in organic electronic device applications. Purification methods also are adapted to remove organic and inorganic impurities.