Abstract:
An exemplary embodiment of touch display device includes a touch panel and a signal processing circuit. The touch panel includes a plurality of touch sensing units, and each touch sensing unit includes a touch sensing element and a coupling sensing element. The signal processing circuit is electrically connected to the touch sensing element and the coupling sensing element. The touch sensing element provides a touch signal to the signal processing circuit, the coupling sensing element provides a coupling signal to the signal processing circuit, and the signal processing circuit processes the touch signal according to the coupling signal to filter an interference signal of the touch signal. A touch display device using the touch panel is also described.
Abstract:
A patterned conductive element includes a substrate having a surface, an adhesive layer located on the surface, and a patterned carbon nanotube layer located on the adhesive layer. Part of the patterned carbon nanotube layer is embedded in the adhesive layer, and the other part of the patterned carbon nanotube layer is exposed from the adhesive layer.
Abstract:
A touch panel includes a first substrate, a second substrate, a first conductive film disposed on the first substrate, and a second conductive film disposed on the second substrate and juxtaposed with the first conductive film in a face-to-face manner. The second conductive film has a first resistivity in a first direction and a second resistivity in a second direction different from the first direction. The first resistivity is greater than the second resistivity.
Abstract:
The video data output from the dot-inversion driver is re-arranged in the present invention. According this re-arranged method, the video data output from the even data lines or odd data lines is delayed for one scan line scan time. Then, the re-arranged video data are applied to the liquid crystal display structure whose thin film transistors connected with the same scan line are arranged in alternatingly up-down form to store row-inversion driving data in the pixel region.
Abstract:
The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
Abstract:
An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer.
Abstract:
The present disclosure relates to a method for making pattern conductive element. The method includes steps. A substrate having a surface is provide. An adhesive layer is formed on the surface of the substrate. Part of the adhesive layer is solidified to form a solidified adhesive layer and a non-solidified adhesive layer. A carbon nanotube layer is applied on the adhesive layer. The non-solidified adhesive layer is solidified so that the carbon nanotube layer on the non-solidified adhesive layer forms a fixed carbon nanotube layer and the carbon nanotube layer on the solidified adhesive layer forms a non-fixed carbon nanotube layer. The non-fixed carbon nanotube layer is removed and the fixed carbon nanotube layer is remained to form a pattern carbon nanotube layer.
Abstract:
An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a common electrode layer and a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer. A distance between the common electrode layer and the carbon nanotube touching functional layer is above 100 microns and equal to or less than 2 millimeters.
Abstract:
A method for making a patterned conductive element includes following steps. A substrate is provided. A patterned adhesive layer is applied on a surface of the substrate. A carbon nanotube layer is placed on a surface of the patterned adhesive layer. The patterned adhesive layer is solidified to obtain a fixed part of the carbon nanotube layer and a non-fixed part of carbon nanotube layer. The non-fixed part of carbon nanotube layer is removed.
Abstract:
The video data output from the dot-inversion driver is re-arranged in the present invention. According this re-arranged method, the video data output from the even data lines or odd data lines is delayed for one scan line scan time. Then, the re-arranged video data are applied to the liquid crystal display structure whose thin film transistors connected with the same scan line are arranged in alternatingly up-down form to store row-inversion driving data in the pixel region.