摘要:
The disclosure relates to a method of forming an n-type doped active area on a semiconductor substrate that presents an improved placement profile. The method comprises the placement of arsenic in the presence of a carbon-containing arsenic diffusion suppressant in order to reduce the diffusion of the arsenic out of the target area during heat-induced annealing. The method may additionally include the placement of an amorphizer, such as germanium, in the target area in order to reduce channeling of the arsenic ions through the crystalline lattice. The method may also include the use of arsenic in addition to another n-type dopant, e.g. phosphorus, in order to offset some of the disadvantages of a pure arsenic dopant. The disclosure also relates to a semiconductor component, e.g. an NMOS transistor, formed in accordance with the described methods.
摘要:
One aspect of the inventors' concept relates to a method of forming a semiconductor device. In this method, a gate structure is formed over a semiconductor body. A source/drain mask is patterned over the semiconductor body implanted source and drain regions are formed that are associated with the gate structure. After forming the implanted source and drain regions, a multi-stage implant is performed on the source and drain regions that comprises at least two implants where the dose and energy of the first implant varies from the dose and energy of the second implant. Other methods and devices are also disclosed.
摘要:
One aspect of the inventors' concept relates to a method of forming a semiconductor device. In this method, a gate structure is formed over a semiconductor body. A source/drain mask is patterned over the semiconductor body implanted source and drain regions are formed that are associated with the gate structure. After forming the implanted source and drain regions, a multi-stage implant is performed on the source and drain regions that comprises at least two implants where the dose and energy of the first implant varies from the dose and energy of the second implant. Other methods and devices are also disclosed.
摘要:
A method for manufacturing a semiconductor device featuring a high-stress dielectric layer is disclosed. The method involves the deposition of a comparatively thick liner layer that exerts increased strain on an underlying gate and active areas, resulting in enhanced carrier mobility through the transistor and heightened transistor performance. The method also involves the amelioration of fabrication problems that might arise from the deposition of a comparatively thick liner layer by forming such layer with at least a partially direction deposition process. Also disclosed are semiconductor devices manufactured in accordance with the disclosed methods.
摘要:
An optical obturator system is described. The optical obturator system includes a transparent window member provided on a distal tip portion of the obturator shaft, thus permitting the surgeon to visualize the tissue of the patient (e.g., via an imaging system positioned near the window member). One or more major portions of the optical obturator system may be formed of a biocompatible material, such as but not limited to stainless steel. Accordingly, the optical obturator system may be reusable for a relatively large number of surgical procedures.
摘要:
A trocar is described. The trocar is formed of a biocompatible material, such as but not limited to stainless steel. Accordingly, the trocar is reusable for a relatively large number of surgical procedures assuming conventional sterilization techniques are employed after each surgical procedure. Additionally, the trocar is provided with an angled blade design formed on a distal portion of the trocar shaft. More specifically, the blade design includes a first portion extending substantially co-planar to a proximal portion of the tip portion of the trocar shaft and a second portion extending angularly inwardly towards a distal portion of the tip portion of the trocar shaft.
摘要:
A trocar is described. The trocar is formed of a biocompatible material, such as but not limited to stainless steel. Accordingly, the trocar is reusable for a relatively large number of surgical procedures assuming conventional sterilization techniques are employed after each surgical procedure. Additionally, the trocar is provided with an angled blade design formed on a distal portion of the trocar shaft. More specifically, the blade design includes a first portion extending substantially co-planar to a proximal portion of the tip portion of the trocar shaft and a second portion extending angularly inwardly towards a distal portion of the tip portion of the trocar shaft.