Abstract:
The feature size of semiconductor devices continues to decrease in each new generation. Smaller channel lengths lead to increased leakage currents. To reduce leakage current, some power domains within a device may be powered off (e.g., power collapsed) during periods of inactivity. However, when power is returned to the collapsed domains, circuitry in other power domains may experience significant processing overhead associated with reconfiguring communication channels to the newly powered domains. Provided in the present disclosure are exemplary techniques for isolating power domains to promote flexible power collapse while better managing the processing overhead associated with reestablishing data connections.
Abstract:
Dual-voltage domain memory buffers, and related systems and methods are disclosed. To reduce area needed for voltage level shifters for voltage level shifting, latch banks are provided in a voltage domain of memory buffer read circuitry, separate from the voltage domain of a write data input to the latch banks. A write data input voltage level shifter is disposed between the write data input and the latch banks to voltage level shift write data on the write data input to the voltage domain of the latch banks. In this manner, voltage level shifters are not required to voltage level shill the latch bank outputs, because the latch banks are in the voltage domain of the memory buffer read circuitry. In this manner, semiconductor area that would otherwise be needed for the voltage level shifters to voltage level shift latch bank outputs is not required.
Abstract:
Dual-voltage domain memory buffers, and related systems and methods are disclosed. To reduce area needed for voltage level shifters for voltage level shifting, latch banks are provided in a voltage domain of memory buffer read circuitry, separate from the voltage domain of a write data input to the latch banks. A write data input voltage level shifter is disposed between the write data input and the latch banks to voltage level shift write data on the write data input to the voltage domain of the latch banks. In this manner, voltage level shifters are not required to voltage level shill the latch bank outputs, because the latch banks are in the voltage domain of the memory buffer read circuitry. In this manner, semiconductor area that would otherwise be needed for the voltage level shifters to voltage level shift latch bank outputs is not required.
Abstract:
The feature size of semiconductor devices continues to decrease in each new generation. Smaller channel lengths lead to increased leakage currents. To reduce leakage current, some power domains within a device may be powered off (e.g., power collapsed) during periods of inactivity. However, when power is returned to the collapsed domains, circuitry in other power domains may experience significant processing overhead associated with reconfiguring communication channels to the newly powered domains. Provided in the present disclosure are exemplary techniques for isolating power domains to promote flexible power collapse while better managing the processing overhead associated with reestablishing data connections.
Abstract:
In a particular embodiment, a method of managing a cache memory includes, responsive to a cache size change command, changing a mode of operation of the cache memory to a write through/no allocate mode. The method also includes processing instructions associated with the cache memory while executing a cache clean operation when the mode of operation of the cache memory is the write through/no allocate mode. The method further includes after completion of the cache clean operation, changing a size of the cache memory and changing the mode of operation of the cache to a mode other than the write through/no allocate mode.
Abstract:
In a particular embodiment, a method of managing a cache memory includes, responsive to a cache size change command, changing a mode of operation of the cache memory to a write through/no allocate mode. The method also includes processing instructions associated with the cache memory while executing a cache clean operation when the mode of operation of the cache memory is the write through/no allocate mode. The method further includes after completion of the cache clean operation, changing a size of the cache memory and changing the mode of operation of the cache to a mode other than the write through/no allocate mode.