Abstract:
A method including receiving an indication of a number of active processing units in a computer processor; in response to receiving the indication, determining an appropriate operating voltage margin for the computer processor; reducing an operating frequency of the active processing units in response to receiving the indication; adjusting a power supply to increase or decrease a voltage to the computer processor in accordance with the appropriate operating voltage margin; and increasing the operating frequency of the active processing units in response to an acknowledgment that the power supply has been adjusted.
Abstract:
Systems and methods for dynamic clock and voltage scaling can switch integrated circuits between frequency-voltage modes with low latency. These systems include a resource power manager that can control a power management integrated circuit (PMIC), phase locked loops (PLLs), and clock dividers. The resource power manager controls transitions between frequency-voltage modes. The systems and methods provide dynamic clock and voltage scaling where the transitions between frequency-voltage modes are an atomic operation. Additionally, the resource power manager can control many modules, for example, clock dividers, in parallel. The invention can, due to lower latency between frequency-voltage modes, can provide improved system performance and reduced system power.
Abstract:
Systems and methods for power distribution network (PDN) droop/overshoot mitigation are provided. In certain embodiments, overshoot is mitigated by ramping down a frequency of a clock signal to a processor when the processor is switching clock frequencies and/or the processor is transitioning from an active mode to an idle mode. In certain embodiments, droop is mitigated by ramping up a frequency of a clock signal to a processor when the processor is switching clock frequencies and/or the processor is transitioning from an idle mode to an active mode.
Abstract:
An integrated circuit compensates for circuit aging by measuring the aging with an aging sensor and controlling a supply voltage based on the measured aging. The operating environment for the aging sensor can be set to reduce impacts of non-aging effects on the measured aging. For example, the operating environment can use a temperature inversion voltage. An initial aging measurement value which is the difference between an initial aged measurement and an initial unaged measurement can be stored on the integrated circuit. A core power reduction controller can use the measured aging and the stored initial aging measurement value to update a performance-sensor target value and then perform adaptive voltage scaling using the using the updated performance-sensor target value.
Abstract:
Techniques for estimating state-dependent capacitance of a circuit are described herein. In one embodiment, a method for determining a circuit state for a circuit comprises determining a capacitance of the circuit for each one of a plurality of circuit states, and selecting one of the circuit states based on the determined capacitances.
Abstract:
A method including receiving an indication of a number of active processing units in a computer processor; in response to receiving the indication, determining an appropriate operating voltage margin for the computer processor; reducing an operating frequency of the active processing units in response to receiving the indication; adjusting a power supply to increase or decrease a voltage to the computer processor in accordance with the appropriate operating voltage margin; and increasing the operating frequency of the active processing units in response to an acknowledgment that the power supply has been adjusted.
Abstract:
Techniques for estimating state-dependent capacitance of a circuit are described herein. In one embodiment, a method for determining a circuit state for a circuit comprises determining a capacitance of the circuit for each one of a plurality of circuit states, and selecting one of the circuit states based on the determined capacitances.
Abstract:
Systems and methods for power distribution network (PDN) droop/overshoot mitigation are provided. In certain embodiments, overshoot is mitigated by ramping down a frequency of a clock signal to a processor when the processor is switching clock frequencies and/or the processor is transitioning from an active mode to an idle mode. In certain embodiments, droop is mitigated by ramping up a frequency of a clock signal to a processor when the processor is switching clock frequencies and/or the processor is transitioning from an idle mode to an active mode.
Abstract:
Systems and methods for performing thermal simulations of a system are disclosed herein in. In one embodiment, a computer-implemented method for thermal simulation comprises determining a leakage power profile for a circuit in the system, adding the leakage power profile to a dynamic power profile of the circuit to obtain a combined power profile, and convolving the combined power profile with an impulse response to obtain a thermal response at a location on the system.
Abstract:
Systems and methods for dynamic clock and voltage scaling can switch integrated circuits between frequency-voltage modes with low latency. These systems include a resource power manager that can control a power management integrated circuit (PMIC), phase locked loops (PLLs), and clock dividers. The resource power manager controls transitions between frequency-voltage modes. The systems and methods provide dynamic clock and voltage scaling where the transitions between frequency-voltage modes are an atomic operation. Additionally, the resource power manager can control many modules, for example, clock dividers, in parallel. The invention can, due to lower latency between frequency-voltage modes, can provide improved system performance and reduced system power.