Abstract:
An access point is identified based on a plurality of pilot signatures. Here, in addition to transmitting a pilot signal that is encoded (e.g., spread/scrambled) using a particular pilot signature, an access point transmits a message that includes at least one indication of at least one other pilot signature. For example, an access point may use one PN offset to generate a pilot signal and transmit a message that identifies at least one other PN offset. An access terminal that receives the pilot signal and the message may then generate a pilot report that identifies all of these pilot signatures. Upon receiving a handover message including this pilot-related information, a target network entity with knowledge of the pilot signatures assigned to that access point may then accurately identify the access point as a target for handover of the access terminal.
Abstract:
Disclosed is a method of low power discovery (LPD) that extends the battery life of a portable Wi Fi device or portable media player (PMP) using an IEEE 802.11 interface. Battery life extension is effected by ensuring that a PMP host processor is only on when in designated 802.11 coverage or when needed by a user by employing probabilistic channel scanning. The method includes bringing an access terminal host equipped with an 802.11 interface to an advanced configuration and power interface (ACPI) state S3 or an equivalent sleep state prior to the device or PMP going to sleep. Additionally, the method includes programming a Bluetooth (BT) device at the access terminal is to look for a certain IAC (inquiry access code), whereupon finding this IAC, the access sends a Bluetooth inquiry directing an access point (AP) to wake-up the device or PMP via a wake-up packet.
Abstract:
According to some wireless network standards the size of a neighbor cell list is restricted to a maximum size. The limited size of a neighbor cell list may not reflect the realities of a wireless network deployment, especially for deployments including numerous femto cells clustered in close proximity. Accordingly, as the concentration of macro cells and/or femto cells in an area increases, there lies a challenge to identify and communicate neighbor lists to user devices that reflect the arrangement of a particular portion of the deployment and the needs of the user devices. Various systems, methods and apparatus described herein are configured to provide a user device or a group of user devices a neighbor cell list that includes neighbor cell identifiers chosen from a candidate list.
Abstract:
A deployment and distribution model improves content delivery with a business incentive for placement of kiosks with one or more wireless access points in public locations so that portable media players (PMPs) can receive media content (e.g., audio, video, text, haptic content, etc.). In addition, coordination between subscribing users of PMPs, vendors who provide kiosks, and a network central controller of a content distribution system allow for prepositioning of video content at the kiosks through economically desirable low data rate communication links from the network (e.g., dial-up modem, DSL, etc.); coordinated queuing of downloads (e.g., partial downloads) between kiosk to PMP, peer-to-peer (P2P) downloading between PMPs, and uploads from PMP to kiosk; billing/crediting to correspond with such participation in the distribution; and changing priority/selection of prepositioning of content at kiosks to reflect a clientele profile.
Abstract:
An access point is identified based on a plurality of pilot signatures. Here, in addition to transmitting a pilot signal that is encoded (e.g., spread/scrambled) using a particular pilot signature, an access point transmits a message that includes at least one indication of at least one other pilot signature. For example, an access point may use one PN offset to generate a pilot signal and transmit a message that identifies at least one other PN offset. An access terminal that receives the pilot signal and the message may then generate a pilot report that identifies all of these pilot signatures. Upon receiving a handover message including this pilot-related information, a target network entity with knowledge of the pilot signatures assigned to that access point may then accurately identify the access point as a target for handover of the access terminal.
Abstract:
According to some wireless network standards the size of a neighbor cell list is restricted to a maximum size. The limited size of a neighbor cell list may not reflect the realities of a wireless network deployment, especially for deployments including numerous femto cells clustered in close proximity. Accordingly, as the concentration of macro cells and/or femto cells in an area increases, there lies a challenge to identify and communicate neighbor lists to user devices that reflect the arrangement of a particular portion of the deployment and the needs of the user devices. Various systems, methods and apparatus described herein are configured to provide a user device or a group of user devices a neighbor cell list that includes neighbor cell identifiers chosen from a candidate list.
Abstract:
According to some wireless network standards the size of a neighbor cell list is restricted to a maximum size. The limited size of a neighbor cell list may not reflect the realities of a wireless network deployment, especially for deployments including numerous femto cells clustered in close proximity. Accordingly, as the concentration of macro cells and/or femto cells in an area increases, there lies a challenge to identify and communicate neighbor lists to user devices that reflect the arrangement of a particular portion of the deployment and the needs of the user devices. Various systems, methods and apparatus described herein are configured to provide a user device or a group of user devices a neighbor cell list that includes neighbor cell identifiers chosen from a candidate list.
Abstract:
A method of low power discovery (LPD) that extends the battery life of a portable Wi Fi device or portable media player (PMP) using IEEE 802.11 interface by ensuring that PMP host processor is only on when in designated 802.11 coverage or when needed by a user, by employing probabilistic channel scanning-comprising:A) bringing an AT host equipped with an 802.11 interface to an advanced configuration and power interface (ACPI) state S3 or equivalent sleep state, and prior to said device or media player going to sleep; andB) programming the 802.11 WLAN to wake up based on a predetermined trigger logic.