Abstract:
Exemplary embodiments are related to enhancing power efficiency of an electronic device. A device may include a power management module and a radio-frequency (RF) module coupled to the power management module. The device may further include a digital module coupled to each of the power management module and the RF module and configured to dynamically adjust at least one setting of the power management module based on one or more RF conditions.
Abstract:
The present disclosure includes circuits and methods for driving resonant actuators. In one embodiment, a drive signal is applied to an actuator during a portion of a plurality of half cycles of a period of the drive signal. The actuator has a resonant frequency and may vibrate in response to the drive signal. An induced voltage is generated on terminals of the actuator in response to the vibration. A detection circuit may detect when the induced voltage on the actuator crosses a threshold after the drive signal is turned off. The drive signal may be triggered based on when the induced voltage crosses the threshold to align a frequency and phase of the drive signal with the resonant frequency and a phase of the actuator.
Abstract:
A method and apparatus for a boost converter topology for low battery voltage support. In the method, an input voltage is boosted by closing first through third switches and then opening a fourth switch to charge a capacitor. The first and second switches are then opened. The voltage is then doubled by closing the third and fourth switches to discharge the first capacitor into a second capacitor and charging a third capacitor. A further embodiment provides an additional method for selectively boosting an input voltage to an electronic device. The method first characterizes the efficiency of a circuit, and then determines a crossover point for a ratio of output voltage to input voltage, and then enabling or disabling a voltage boost converter based on the crossover point.
Abstract:
Exemplary embodiments are directed to systems, devices, methods, and computer-readable media for calibrating a charging current. A device may include a charger for conveying an output voltage to a chargeable device. The device may also include a monitoring system including an analog-to-digital converter for measuring a current received by the chargeable device. Further, the device may include a control device configured to receive a charging current value from the monitoring system and convey a signal to the charger in response to a comparison of the charging current value to a target current value.
Abstract:
In one embodiment, a circuit comprises a sensor providing a digital signal responsive to a battery voltage on a battery terminal of a battery. The sensor can be an analog-to-digital convertor. A processor is coupled to the sensor and is configured to calculate a state of charge of the battery based on the digital signal at a first time, the digital signal at a second time, and a stored battery profile of open circuit voltage as a function of state of charge at the second time.
Abstract:
Exemplary embodiments are related to enhancing power efficiency of an electronic device. A device may include a power management module and a radio-frequency (RF) module coupled to the power management module. The device may further include a digital module coupled to each of the power management module and the RF module and configured to dynamically adjust at least one setting of the power management module based on one or more RF conditions.
Abstract:
An electronic device is described. The electronic device includes a first port. The electronic device also includes a second port. The electronic device further includes a multiphase charger. The multiphase charger includes a first buck. The multiphase charger also includes a second buck. The multiphase charger further includes a first port switch. The multiphase charger also includes a second port switch. The multiphase charger further includes a reverse boost switch. The multiphase charger also includes a multiphase switch.
Abstract:
A method and apparatus for extending the driving capacity of a power management device are provided. The method involves determining an energy requirement for the operation of a power management device. Next, the method compares the energy requirement for the operation of a power management device with a capability of a first power device. If the energy requirement is greater than the energy requirement of the first power device, the energy is switched to a second power device of higher capacity. The apparatus includes: a first power device; a second power device connected in parallel to the first power device; a first inductor connected to the first power device and a capacitor connected to the first inductor; and a second inductor connected to a second power device and a capacitor connected to the second inductor.
Abstract:
The present disclosure includes circuits and methods for controlling skin temperature of an electronic device. In one embodiment, a thermal sensor is configured on a case of a handheld electronic device. The thermal sensor is coupled to a battery charger having a current limit circuit. If the sensed temperature of the case increases above a threshold, a current limit is reduced to reduce current in the battery charger.
Abstract:
An apparatus configured for providing communication between integrated circuits is disclosed. The apparatus includes a first integrated circuit. The apparatus also includes a second integrated circuit. The apparatus further includes an alarm interface that couples the first integrated circuit to the second integrated circuit. An alarm signal is sent on the alarm interface to signal an alarm event. The alarm signal is modulated differently based on a type of the alarm event.