Abstract:
A device that includes a first board, a second board, and coaxial cable coupled to the first board and the second board. The coaxial cable includes a multi-line coaxial cable configured to provide at least two electrical paths for electrical currents between the first board and the second board. A first plug is coupled to the first board. A second plug is coupled to the second board. The coaxial cable includes a first receptacle and a second receptacle. The first receptacle is configured to couple to the first plug. The second receptacle is configured to couple to the second plug. The coaxial cable is configured to provide (i) a first electrical path for a first electrical current between the first board and the second board, and (ii) a second electrical path for a second electrical current between the first board and the second board.
Abstract:
An integrated millimeter wave antenna module may include at least one antenna array directly connected to a wiring board with a flexible printed circuit without any additional connectors. The integrated module may include an antenna, a flexible printed circuit attached to the antenna on one end and a wiring board on the other end.
Abstract:
Techniques for providing a transceiver with a sliding intermediate frequency (IF). In an aspect, a PLL generates a single local oscillator (LO) signal used for both up-conversion by a transmit (TX) signal path and down-conversion by a receive (RX) signal path, wherein the LO frequency is chosen as the TX carrier frequency. As the TX and RX carrier frequencies may generally differ by a variable amount, the RX signal path utilizing the (TX) LO frequency for down-conversion may be characterized as having a “sliding” IF. To accommodate the sliding IF receiver architecture, specific processing functions such as charge sampling, discrete-time analog band-pass filtering, and sub-sampling analog-to-digital conversion (ADC) are described.
Abstract:
An integrated millimeter wave antenna module may include at least one antenna array connected to a wiring board with a flexible printed circuit without any additional connectors. The integrated module may include an antenna, a flexible printed circuit attached to the antenna on one end and a wiring board on the other end.
Abstract:
Apparatus, methods, and computer-readable media for implementing a display-side antenna are disclosed herein. An example apparatus for wireless communication includes a housing and a display device supported by the housing. The example display device includes at least a glass cover and a panel positioned between the glass cover and an internal surface of the housing. The panel may be configured to output graphical content for presentment on the glass cover via pixels arranged within a visible area of the panel. The example apparatus also includes an antenna array. The antenna array may be configured to facilitate wireless communication at the apparatus. The antenna array may be positioned to overlap a portion of the visible area of the panel and configured to allow graphical content output by the panel to display on the glass cover at the overlapped portion of the visible area.
Abstract:
An electronic device includes a first antenna, a second antenna, and a device cover. The first antenna may be configured to transmit or receive signals at a first frequency, and the second antenna may be configured to transmit or receive signals at a second frequency. The device cover may be configured to enclose at least a portion of the device, the and may have a first thickness in a first area and a second thickness in a second area. The first area may be substantially aligned with a boresight of the first antenna, and the second area may be substantially aligned with a boresight of the second antenna. The first thickness may be different than the second thickness.
Abstract:
A method, an apparatus, and a system product for mixing radio frequency signals are provided. In one aspect, the apparatus is configured to perform switching of switches based on first, second, third, and fourth phased half duty clock signals. The apparatus convolves a differential input signal on a differential input port with the first, second, third, and fourth phased half duty cycle clock signals to concurrently generate a differential in-phase output signal and a differential quadrature-phase output signal on a dual differential output port. The first, second, third, and fourth phased half duty cycle clock signals are of the same frequency and out of phase by a multiple of ninety degrees with respect to each other.
Abstract:
Techniques for providing a transceiver with a sliding intermediate frequency (IF). In an aspect, a PLL generates a single local oscillator (LO) signal used for both up-conversion by a transmit (TX) signal path and down-conversion by a receive (RX) signal path, wherein the LO frequency is chosen as the TX carrier frequency. As the TX and RX carrier frequencies may generally differ by a variable amount, the RX signal path utilizing the (TX) LO frequency for down-conversion may be characterized as having a “sliding” IF. To accommodate the sliding IF receiver architecture, specific processing functions such as charge sampling, discrete-time analog band-pass filtering, and sub-sampling analog-to-digital conversion (ADC) are described.
Abstract:
An electronic device includes a first antenna, a second antenna, and a device cover. The first antenna may be configured to transmit or receive signals at a first frequency, and the second antenna may be configured to transmit or receive signals at a second frequency. The device cover may be configured to enclose at least a portion of the device, and may have a first thickness in a first area and a second thickness in a second area. The first area may be substantially aligned with a boresight of the first antenna, and the second area may be substantially aligned with a boresight of the second antenna. The first thickness may be different than the second thickness.
Abstract:
An electronic device includes a first antenna, a second antenna, and a device cover. The first antenna may be configured to transmit or receive signals at a first frequency, and the second antenna may be configured to transmit or receive signals at a second frequency. The device cover may be configured to enclose at least a portion of the device, the and may have a first thickness in a first area and a second thickness in a second area. The first area may be substantially aligned with a boresight of the first antenna, and the second area may be substantially aligned with a boresight of the second antenna. The first thickness may be different than the second thickness.