Abstract:
Methods and apparatus for automatically coupling stackable modular devices are described. The modular devices may be coupled using electromagnetic forces generated by precisely-timed pulses of electric current through electromagnetic materials that cause a first modular device to screw itself into a second modular device. The modular devices may exchange data through electrical or optical connections after coupling. A method includes detecting that a second modular device is proximately and coaxially located to a first modular device, activating a plurality of electromagnetic elements in an annular electromagnetic array according to a timed sequence, each electromagnetic element being activated at a different time than the other electromagnetic elements in the plurality of electromagnetic elements, detecting that the second modular device is communicatively coupled with the first modular device, and deactivating the plurality of electromagnetic elements after detecting that the second modular device is communicatively coupled with the first modular device.
Abstract:
Mechanisms and techniques for managing devices within an energy management system are disclosed. In one embodiment, the energy management system includes a first controller and a second controller that control communications with and manage devices. The first controller determines to transmit a system management application instruction to a device and converts the system management application instruction to a device controller instruction based on an identifier of the device. The first controller generates a system message that includes the device controller instruction and formats the system message based on a network transmission format. The second controller receives the system message from the first controller and reformats the system message based on a device controller interface format. The second controller transmits the reformatted system message to a controller interface of the device.
Abstract:
Methods and apparatus for automatically coupling stackable modular devices are described. The modular devices may be coupled using electromagnetic forces generated by precisely-timed pulses of electric current through electromagnetic materials that cause a first modular device to screw itself into a second modular device. The modular devices may exchange data through electrical or optical connections after coupling. A method includes detecting that a second modular device is proximately and coaxially located to a first modular device, activating a plurality of electromagnetic elements in an annular electromagnetic array according to a timed sequence, each electromagnetic element being activated at a different time than the other electromagnetic elements in the plurality of electromagnetic elements, detecting that the second modular device is communicatively coupled with the first modular device, and deactivating the plurality of electromagnetic elements after detecting that the second modular device is communicatively coupled with the first modular device.
Abstract:
Methods, systems, and devices are described for managing wireless communications. In the methods, systems, and devices, a subset of a set of neighboring cells is identified for measurement by a mobile device. The subset of neighboring cells is identified based on historical information associated with mobility patterns of the mobile device.
Abstract:
Various aspects directed towards automating an onboarding procedure are disclosed. In a first aspect, an administrative communication associated with onboarding an onboardable device is received by an access point (AP) device, such that the administrative communication originates from a device different than the onboardable device. The AP device then enables the onboardable device to access a secure network based on the administrative communication. In another aspect, an identifier is transmitted from an onboardable device while the onboardable device operates in an AP mode. The onboardable device then receives credentials associated with accessing a secure network via an AP device. Here, the credentials received from the AP device are in response to an authentication of the identifier by an administrator. The onboardable device then connects to the secure network by utilizing the credentials.
Abstract:
The various embodiments include a near-eye display having a transmissive display and a diffractive micro-lens array. The transmissive display may be positioned relative to the diffractive micro-lens array so that the distance between the transmissive display and the diffractive micro-lens array is be approximately equal to focal length of the diffractive micro-lens array. The transmissive display may also be positioned relative to the diffractive micro-lens array so that a percentage of light emitted from the transmissive display is diffracted by the micro-lens array and collimated into focus on a retina of a human eye. The transmissive display may be further positioned relative to the diffractive micro-lens array so that light from a real world scene passes through transparent portions of the transmissive display and is diffracted by the micro-lens array out of focus of the human eye.
Abstract:
Methods and devices for providing access to a wireless network through a network access point secured with a network password may include receiving a request to provide access to the wireless network for a device on the network access point. A virtual access point may be established to provide access to the wireless network for the device in response to receiving the request to provide access for the device on the network access point. A virtual access point password may be established for the device and associated with a unique identifier of the device. The virtual access point password may be different from the network password. The device may be provided with access to the network when an entered password matches the virtual access point password and the device identifier matches the unique identifier of the device associated with the virtual access point password.
Abstract:
Natural-scene light is polarized so the light exiting the polarizer and entering a glass assembly has a first polarization. Light having a second polarization substantially orthogonal to the first polarization is launched into the glass assembly and directed normal to the glass assembly and into a zone plate assembly, along with the natural-scene light. A first plurality of electric fields is established in the zone assembly to form at least one zone plate that modulates the launched light without modulating the natural-scene light. The first plurality of electric fields is disestablished and a second plurality of electric fields is established in the zone plate assembly to reposition the at least one zone plate in the liquid crystal plate. Disestablishment and establishment of electric fields is repeated at a sufficient rate so that an image defined by a number of pixel spots formed on a retina is perceived by a viewer.
Abstract:
A method, an apparatus, and a computer program product for modulating optics in a display are provided. An apparatus forms a plurality of zone plates in a liquid crystal using electric fields. Each zone plate has a center, and the centers are aligned along a first axis of the display. The apparatus moves the plurality of zone plates in a first direction along a second axis of the display different from the first axis of the display, while maintaining alignment of the centers of the plurality of zone plates along the first axis. Such movement is provided through repositioning of electric fields through the liquid crystal.
Abstract:
Methods and devices for providing access to a wireless network through a network access point secured with a network password may include receiving a request to provide access to the wireless network for a device on the network access point. A virtual access point may be established to provide access to the wireless network for the device in response to receiving the request to provide access for the device on the network access point. A virtual access point password may be established for the device and associated with a unique identifier of the device. The virtual access point password may be different from the network password. The device may be provided with access to the network when an entered password matches the virtual access point password and the device identifier matches the unique identifier of the device associated with the virtual access point password.