Abstract:
Apparatuses, methods, and computer-readable media for mitigating intermodulation (IM) distortion in wireless communications devices and systems are presented. Aspects of the present invention include several different techniques that can be used separately or in tandem. For example, a receiver mitigates IM distortion by altogether avoiding reception of satellites in a GNSS band(s) that are affected by it (e.g. “victim’ or “affected” band). A receiver may instead switch reception of satellites in a GNSS band that are affected by the IM distortion (e.g. the “victim” band) and not in a dedicated tracking mode, to another GNSS band that is not affected (e.g. “non-victim” band), while still maintaining tracking of satellites in the original victim GNSS band that are in a dedicated tracking mode. A receiver may also shift a local oscillator (LO) frequency. A receiver may also perform enhanced cross-correlation techniques, such a widening or expanding an existing Xcorr algorithm mask.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify one or more symbols, associated with downlink communication of a first radio access technology (RAT), that are Impacted by antenna switching used to transmit an uplink reference signal of a second RAT. The UE may perform a mitigation action to mitigate downlink performance degradation associated with the first RAT based at least in part on identifying the one or more symbols. Numerous other aspects are described.
Abstract:
Certain aspects relate to methods and apparatus for avoiding and/or escaping cell range expansion (CRE) in a heterogeneous network (HetNet). A user equipment (UE) may detect the occurrence of one or more conditions while the UE is in a region of cell range expansion (CRE) in which the UE may be handed over from a first cell of a first power class type to a second cell of a second power class type, the second power class type being lower than the first power class type. The UE may take action to stop being served by the second cell or avoid being handed over to the second cell in response to the detection.
Abstract:
A device includes a low noise amplifier (LNA) for amplifying an input signal, with the LNA including a first transistor configured to receive the input signal, a second transistor configured to receive a bias current and forming a current mirror for the first transistor, and an operational amplifier (op amp) operative to generate a bias voltage for the first and second transistors to match operating points of the first and second transistors.
Abstract:
A user equipment (UE) can connect to an evolved universal terrestrial radio access network (E-UTRAN) new radio (NR) dual-connectivity (EN-DC) network using both a Long Term Evolution (LTE) anchor link and a 5G NR non-anchor link. The UE shares RF chain components (e.g., antennas) between the LTE and NR links. The UE uses various techniques for controlling or modifying NR sounding reference signal (SRS) transmissions and/or LTE operations to avoid interruption on LTE operations due to NR SRS transmissions.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an antenna switch selection associated with a dual connectivity antenna configuration, wherein the antenna switch selection is associated with a first radio access technology (RAT) and the dual connectivity antenna configuration permits communication via the first RAT and a second RAT; determine, based at least in part on the antenna switching selection, a quantity of communication chains, associated with the first RAT, that are affected by an antenna switching process of the second RAT; and selectively permit, based at least in part on the quantity of communication chains, a reconfiguration of the dual connectivity antenna configuration according to the antenna switch selection. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure provide techniques for reducing a quantity of data sent carrier aggregation (CA) related capability reporting by a UE operating in a cell using full dimension multiple-input multiple-output (FD-MIMO) techniques. In an exemplary method, a base station obtains a relative weight of baseband processing for a component carrier (CC) configured for full-dimension multiple-input multiple-output (FD-MIMO) communications for a user equipment (UE); determines, based on the relative weight, to enable FD-MIMO downlink (DL) transmissions to the UE via the CC; and transmits an FD-MIMO transmission via the CC to the UE.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an antenna switch selection associated with a dual connectivity antenna configuration, wherein the antenna switch selection is associated with a first radio access technology (RAT) and the dual connectivity antenna configuration permits communication via the first RAT and a second RAT; determine, based at least in part on the antenna switching selection, a quantity of communication chains, associated with the first RAT, that are affected by an antenna switching process of the second RAT; and selectively permit, based at least in part on the quantity of communication chains, a reconfiguration of the dual connectivity antenna configuration according to the antenna switch selection. Numerous other aspects are provided.
Abstract:
Aspects are provided which allow an apparatus to efficiently indicate downgraded band combinations associated with carrier aggregation (CA) to a base station, in which one or more UE capabilities such as the DL MIMO of certain supported band combinations may be downgraded in exchange for other UE capabilities such as FD-MIMO and 256/1024QAM. The apparatus, which may be a UE, receives a request from a base station for information associated with downgraded band combinations and for information corresponding to at least one UE capability associated with each of the downgraded band combinations. After receiving the request, the UE sends, to the base station, information indicating the downgraded band combinations and the at least one UE capability. The UE may thus report downgraded band combinations for a subset of supported band combinations as requested by the base station, thereby minimizing capability reporting of the UE.
Abstract:
Methods and systems for evaluating Global Navigation Satellite System (GNSS) signals are provided. Each of a first GNSS signal received by a GNSS receiver and a second GNSS signal received by the GNSS receiver is accessed. The second GNSS signal can have temporal fluctuations weaker than temporal fluctuations in the first GNSS signal. A delay between a sequence in the first GNSS signal and a corresponding sequence signal in the second GNSS signal is estimated and compared to a threshold. Upon determining that the delay exceeds the threshold, a location is estimated using both the first GNSS signal and the second GNSS signal.