Abstract:
Certain aspects of the present disclosure generally relate to voltage-controlled oscillators (VCOs) using a lowered or an adjustable negative transconductance (−gm) compared to conventional VCOs. This −gm degeneration technique suppresses the noise injected into an inductor-capacitor (LC) tank of the VCO, thereby providing lower signal-to-noise ratio (SNR) for a given VCO voltage swing, lower power consumption, and decreased phase noise. One example VCO generally includes a resonant tank circuit, an active negative transconductance circuit connected with the resonant tank circuit, and a bias current circuit for sourcing or sinking a bias current through the resonant tank circuit and the active negative transconductance circuit to generate an oscillating signal. The active negative transconductance circuit includes cross-coupled transistors and an impedance connected between the cross-coupled transistors and a reference voltage.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for compensating, or at least adjusting, for capacitor leakage. One example method generally includes determining a leakage voltage corresponding to a leakage current of a capacitor in a filter for a phase-locked loop (PLL), wherein the determining comprises closing a set of switches for discontinuous sampling of the leakage voltage; based on the sampled leakage voltage, generating a sourced current approximately equal to the leakage current; and injecting the sourced current into the capacitor.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for compensating, or at least adjusting, for capacitor leakage. One example method generally includes determining a leakage voltage corresponding to a leakage current of a capacitor in a filter for a phase-locked loop (PLL), wherein the determining comprises closing a set of switches for discontinuous sampling of the leakage voltage; based on the sampled leakage voltage, generating a sourced current approximately equal to the leakage current; and injecting the sourced current into the capacitor.
Abstract:
A method, an apparatus, and a system product for mixing radio frequency signals are provided. In one aspect, the apparatus is configured to perform switching of switches based on first, second, third, and fourth phased half duty clock signals. The apparatus convolves a differential input signal on a differential input port with the first, second, third, and fourth phased half duty cycle clock signals to concurrently generate a differential in-phase output signal and a differential quadrature-phase output signal on a dual differential output port. The first, second, third, and fourth phased half duty cycle clock signals are of the same frequency and out of phase by a multiple of ninety degrees with respect to each other.
Abstract:
Certain aspects of the present invention provide methods and apparatus for detecting phase shift between signals, such as local oscillating signals in adjacent transceiver paths. One example circuit for phase detection generally includes a mixer configured to mix a first input signal having a first frequency with a second input signal having a second frequency to produce an output signal having frequency components at the sum of and the difference between the first and second frequencies; a filter connected with the mixer and configured to remove one of the frequency components at the sum of the first and second frequencies, thereby leaving a DC component; and an analog-to-digital converter (ADC) (e.g., a comparator) connected with the filter and configured to determine whether the first input signal is in-phase or out-of-phase with the second input signal based on a comparison between the DC component and a reference signal.
Abstract:
Aspects of circuits and methods for generating an oscillating signal are disclosed. The circuit includes a phase detector configured to output first and second signals responsive to a phase difference between two input signals. The phase detector is further configured to disable the first signal when outputting the second signal and to disable the second signal when outputting the first signal. The circuit further includes a voltage controlled oscillator (VCO) configured to generate an oscillating signal having a tunable frequency responsive to the first and second signals.
Abstract:
Certain aspects of the present disclosure generally relate to voltage-controlled oscillators (VCOs) using a lowered or an adjustable negative transconductance (−gm) compared to conventional VCOs. This −gm degeneration technique suppresses the noise injected into an inductor-capacitor (LC) tank of the VCO, thereby providing lower signal-to-noise ratio (SNR) for a given VCO voltage swing, lower power consumption, and decreased phase noise. One example VCO generally includes a resonant tank circuit, an active negative transconductance circuit connected with the resonant tank circuit, and a bias current circuit for sourcing or sinking a bias current through the resonant tank circuit and the active negative transconductance circuit to generate an oscillating signal. The active negative transconductance circuit includes cross-coupled transistors and an impedance connected between the cross-coupled transistors and a reference voltage.