Abstract:
To realize a reduction in the number of parts in a system including a driver IC (semiconductor device). A high potential side power supply voltage is applied to a power supply application area. A high side area is formed with a circuit which includes a driver driving a high side transistor and is operated at a boot power supply voltage with a floating voltage as a reference. A low side area is formed with a circuit operated at a power supply voltage with a low potential side power supply voltage as a reference. A first termination area is disposed in a ring form so as to surround the power supply application area. A second termination area is disposed in a ring form so as to surround the high side area.
Abstract:
A driver IC includes a ring-shaped termination area, and a first area and a second area that are respectively arranged outside and inside the termination area on a layout. A sense MOS that is arranged between a floating terminal and a first sense node and is driven at a power supply voltage is formed in the termination area. A fault detection circuit that detects presence of a fault when a voltage of the first sense node is higher than a decision voltage that has been determined in advance in a period of time that a low side driver is driving a low side transistor into an ON state is formed in the first area.
Abstract:
A power supply device is responsive to load changes. The power supply device includes a switch control circuit, a charge control circuit, and a discharge control circuit. The switch control circuit controls switches so that electrical power is charged into an inductor, discharged from the inductor, and distributed to first and second capacitors in a time-division manner based on a switching cycle. The charge control circuit controls the amount of electrical power to be charged into the inductor based on a first amount of error between a first output power supply voltage and its target value and a second amount of error between a second output power supply voltage and its target value. The discharge control circuit controls a distribution ratio at which the electrical power discharged from the inductor is distributed to the first and second capacitors based on the ratio between the first and second amounts of error.