Abstract:
A semiconductor device includes a first insulating layer (interlayer insulating layer), a resistive element that is disposed over the first insulating layer (interlayer insulating layer) and at least a surface layer of which is a TaSiN layer, and an interlayer insulating layer disposed over the first insulating layer (interlayer insulating layer) and the resistive element. Multiple via plugs having ends coupled to the TaSiN layer are disposed in the interlayer insulating layer.
Abstract:
A semiconductor device includes a first insulating layer (interlayer insulating layer), a resistive element that is disposed over the first insulating layer (interlayer insulating layer) and at least a surface layer of which is a TaSiN layer, and an interlayer insulating layer disposed over the first insulating layer (interlayer insulating layer) and the resistive element. Multiple via plugs having ends coupled to the TaSiN layer are disposed in the interlayer insulating layer.
Abstract:
When writing ReRAM cells, it is pursued to set the cells in a sufficiently high or low resistance state, while preventing excessive writing. Disclosed is a semiconductor storage device including memory cells, each including a variable resistance element, and control circuitry that executes an Off writing process of applying Off writing pulse to a memory cell to turn it into high resistance state and an On writing process of applying On writing pulse to turn it into low resistance state. The control circuitry, when the memory cell is placed in low resistance state, after applying Off writing pulse, applies a reading pulse for a verify process of reading whether it is placed in high or low resistance state. If the memory cell is not placed in high resistance state as a result of the verify process, the control circuitry applies a reset pulse comprising On writing pulse, applies Off writing pulse with extended pulse width and executes the verify process in mentioned order.
Abstract:
A semiconductor device has a p-type metal oxide semiconductor layer; a source electrode connected with the p-type metal oxide semiconductor layer; a drain electrode connected with the p-type metal oxide semiconductor layer; and a gate electrode arranged to oppose to a part of the p-type metal oxide semiconductor layer. The gate electrode and the drain electrode are separated from each other in a top view.
Abstract:
A semiconductor storage device including a plurality of memory cells, each including a variable resistance element, and control circuitry that executes a first writing process of applying a first writing pulse to a memory cell to turn the memory cell state into a first resistance state and a second writing process of applying a second writing pulse of opposite polarity to the first writing pulse to turn the memory cell into a second resistance state, the memory cell from among the plurality of memory cells. The control circuitry, when the memory cell is placed in the second resistance state, after applying the first writing pulse to the memory cell, applies a reading pulse for a verify process of reading whether the variable resistance element is placed in the first resistance state or the second resistance state.
Abstract:
A semiconductor device has a p-type metal oxide semiconductor layer; a source electrode connected with the p-type metal oxide semiconductor layer; a drain electrode connected with the p-type metal oxide semiconductor layer; and a gate electrode arranged to oppose to a part of the p-type metal oxide semiconductor layer. The gate electrode and the drain electrode are separated from each other in a top view.