摘要:
A method for manufacturing a semiconductor die includes providing an SOI semiconductor wafer including a substrate, an insulating layer over the substrate, and a device layer over the insulating layer. A surface of the SOI semiconductor wafer opposite the substrate is mounted to a temporary carrier mount, and the substrate is removed, leaving an exposed surface of the insulating layer. A high-resistivity gold-doped silicon substrate is then provided on the exposed surface of the insulating layer. By providing the high-resistivity gold-doped silicon substrate, an exceptionally high-resistivity substrate can be achieved, thereby minimizing field-dependent electrical interaction between the substrate and one or more semiconductor devices thereon. Accordingly, harmonic distortion in the semiconductor devices caused by the substrate will be reduced, thereby increasing the performance of the device.
摘要:
An RF switch structure having reduced off-state capacitance is disclosed. The RF switch structure includes an RF switch branch having at least three transistors coupled in series within a device layer. Inter-metal dielectric (IMD) layers are disposed over the device layer. At least one of the IMD layers has an effective dielectric constant that is lower than 3.9. In one exemplary embodiment, the IMD layers are made of silicon dioxide having micro-voids. In another exemplary embodiment, the IMD layers are made of silicon dioxide that includes carbon doping. In either exemplary embodiment, an effective dielectric constant ranges from about 3.9 to around 2.0. In another exemplary embodiment, the IMD layers are made of silicon dioxide having trapped air bubbles that provide an effective dielectric constant that ranges from about 2.0 to 1.1.
摘要:
The present disclosure relates to a radio frequency (RF) switch that includes multiple body-contacted field effect transistor (FET) elements coupled in series. The FET elements may be formed using a thin-film semiconductor device layer, which is part of a thin-film semiconductor die. Conduction paths between the FET elements through the thin-film semiconductor device layer and through a substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials. Elimination of the conduction paths allows an RF signal across the RF switch to be divided across the series coupled FET elements, such that each FET element is subjected to only a portion of the RF signal. Further, each FET element is body-contacted and may receive reverse body biasing when the RF switch is in an OFF state, thereby reducing an OFF state drain-to-source capacitance of each FET element.
摘要:
The present disclosure relates to a silicon-on-insulator (SOI) substrate structure with a buried dielectric layer for radio frequency (RF) complementary metal-oxide semiconductor (CMOS) switch fabrications. The buried dielectric layer suppresses back-gate transistors in the RF CMOS switches fabricated on the SOI substrate structure. The SOI substrate structure includes a silicon handle layer, a silicon oxide layer over the silicon handle layer, a buried dielectric layer over the silicon oxide layer, and a silicon epitaxy layer directly over the buried dielectric layer.
摘要:
The present disclosure relates to a silicon-on-insulator (SOI) substrate structure with a buried dielectric layer for radio frequency (RF) complementary metal-oxide semiconductor (CMOS) switch fabrications. The buried dielectric layer suppresses back-gate transistors in the RF CMOS switches fabricated on the SOI substrate structure. The SOI substrate structure includes a silicon handle layer, a silicon oxide layer over the silicon handle layer, a buried dielectric layer over the silicon oxide layer, and a silicon epitaxy layer directly over the buried dielectric layer.