Abstract:
A semiconductor device and methods for manufacturing the same are disclosed. The semiconductor device includes a semiconductor stack structure attached to a wafer handle having at least one aperture that extends through the wafer handle to an exposed portion of the semiconductor stack structure. A thermally conductive and electrically resistive polymer substantially fills the at least one aperture and contacts the exposed portion of the semiconductor stack structure. One method for manufacturing the semiconductor device includes forming patterned apertures in the wafer handle to expose a portion of the semiconductor stack structure. The patterned apertures may or may not be aligned with sections of RF circuitry making up the semiconductor stack structure. A following step includes contacting the exposed portion of the semiconductor stack structure with a polymer and substantially filling the patterned apertures with the polymer, wherein the polymer is thermally conductive and electrically resistive.
Abstract:
A semiconductor device and methods for manufacturing the same are disclosed. The semiconductor device includes a semiconductor stack structure attached to a wafer handle having at least one aperture that extends through the wafer handle to an exposed portion of the semiconductor stack structure. A thermally conductive and electrically resistive polymer substantially fills the at least one aperture and contacts the exposed portion of the semiconductor stack structure. One method for manufacturing the semiconductor device includes forming patterned apertures in the wafer handle to expose a portion of the semiconductor stack structure. The patterned apertures may or may not be aligned with sections of RF circuitry making up the semiconductor stack structure. A following step includes contacting the exposed portion of the semiconductor stack structure with a polymer and substantially filling the patterned apertures with the polymer, wherein the polymer is thermally conductive and electrically resistive.
Abstract:
A semiconductor device and methods for manufacturing the same are disclosed. The semiconductor device includes a semiconductor stack structure attached to a wafer handle having at least one aperture that extends through the wafer handle to an exposed portion of the semiconductor stack structure. A thermally conductive and electrically resistive polymer substantially fills the at least one aperture and contacts the exposed portion of the semiconductor stack structure. One method for manufacturing the semiconductor device includes forming patterned apertures in the wafer handle to expose a portion of the semiconductor stack structure. The patterned apertures may or may not be aligned with sections of RF circuitry making up the semiconductor stack structure. A following step includes contacting the exposed portion of the semiconductor stack structure with a polymer and substantially filling the patterned apertures with the polymer, wherein the polymer is thermally conductive and electrically resistive.
Abstract:
The present invention relates to using an insulator layer between two metal layers of a semiconductor die to provide a micro-electromechanical systems (MEMS) device, such as an ohmic MEMS switch or a capacitive MEMS switch. In an ohmic MEMS switch, the insulator layer may be used to reduce metal undercutting during fabrication, to prevent electrical shorting of a MEMS actuator to a MEMS cantilever, or both. In a capacitive MEMS switch, the insulator layer may be used as a capacitive dielectric between capacitive plates, which are provided by the two metal layers. A fixed capacitive element may be provided by the insulator layer between the two metal layers. In one embodiment of the present invention, an ohmic MEMS switch, a capacitive MEMS switch, a fixed capacitive element, or any combination thereof may be integrated into a single semiconductor die.
Abstract:
A method for processing product wafers using carrier substrates is disclosed. The method includes a step of bonding a first carrier wafer to a first product wafer using a first temporary adhesion layer between a first carrier wafer surface and a first product wafer first surface. Another step includes bonding a second carrier wafer to a second product wafer using a second temporary adhesion layer between a second carrier wafer surface and a second product wafer surface. Another step includes bonding the first product wafer to the second product wafer using a permanent bond between a first product wafer second surface and a second product wafer first surface. In exemplary embodiments, at least one processing step is performed on the first product wafer after the first temporary carrier wafer is bonded to the first product wafer before the second product wafer is permanently bonded to the first product wafer.
Abstract:
A method for processing product wafers using carrier substrates is disclosed. The method includes a step of bonding a first carrier wafer to a first product wafer using a first temporary adhesion layer between a first carrier wafer surface and a first product wafer first surface. Another step includes bonding a second carrier wafer to a second product wafer using a second temporary adhesion layer between a second carrier wafer surface and a second product wafer surface. Another step includes bonding the first product wafer to the second product wafer using a permanent bond between a first product wafer second surface and a second product wafer first surface. In exemplary embodiments, at least one processing step is performed on the first product wafer after the first temporary carrier wafer is bonded to the first product wafer before the second product wafer is permanently bonded to the first product wafer.
Abstract:
Combination circuitry includes a relatively small preamplifier and includes hybrid circuitry. The hybrid circuitry is configured to perform mode switching while also performing some amplification, thus allowing the relatively small preamplifier to be smaller than a conventional power amplifier. In one embodiment, the hybrid circuitry includes first series portion configured to amplify when ON, a first shunt portion, a second series portion configured to amplify when ON, and a second shunt portion. The first series portion may include: a first transistor; a first variable impedance in communication with a gate of the first transistor, wherein the first variable impedance is configured to receive a first transistor control signal; a second transistor in series with the first transistor; and a second variable impedance in communication with a gate of the second transistor, wherein second variable impedance is configured to receive a second transistor control signal.
Abstract:
The present disclosure relates to a radio frequency (RF) switch that includes multiple body-contacted field effect transistor (FET) elements coupled in series. The FET elements may be formed using a thin-film semiconductor device layer, which is part of a thin-film semiconductor die. Conduction paths between the FET elements through the thin-film semiconductor device layer and through a substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials. Elimination of the conduction paths allows an RF signal across the RF switch to be divided across the series coupled FET elements, such that each FET element is subjected to only a portion of the RF signal. Further, each FET element is body-contacted and may receive reverse body biasing when the RF switch is in an OFF state, thereby reducing an OFF state drain-to-source capacitance of each FET element.
Abstract:
A semiconductor device and methods for manufacturing the same are disclosed. The semiconductor device includes a semiconductor stack structure having a first surface and a second surface. A polymer substrate having a high thermal conductivity and a high electrical resistivity is disposed onto the first surface of the semiconductor stack structure. One method includes providing the semiconductor stack structure with the first surface in direct contact with a wafer handle. A next step involves removing the wafer handle to expose the first surface of the semiconductor stack structure. A following step includes disposing a polymer substrate having high thermal conductivity and high electrical resistivity directly onto the first surface of the semiconductor stack structure.
Abstract:
A semiconductor device and methods for manufacturing the same are disclosed. The semiconductor device includes a semiconductor stack structure having a first surface and a second surface. A first polymer having a high thermal conductivity and a high electrical resistivity is disposed on the first surface of the semiconductor stack structure. An exemplary method includes providing the semiconductor stack structure with the second surface in direct contact with a wafer handle. A next step involves removing the wafer handle to expose the second surface of the semiconductor stack structure. A following step includes disposing a second polymer having high thermal conductivity and high electrical resistivity directly onto the second surface of the semiconductor stack structure. Additional methods apply silicon nitride layers on the first surface and second surface of the semiconductor stack structure before disposing the first polymer and second polymer to realize the semiconductor device.