Abstract:
A method for processing product wafers using carrier substrates is disclosed. The method includes a step of bonding a first carrier wafer to a first product wafer using a first temporary adhesion layer between a first carrier wafer surface and a first product wafer first surface. Another step includes bonding a second carrier wafer to a second product wafer using a second temporary adhesion layer between a second carrier wafer surface and a second product wafer surface. Another step includes bonding the first product wafer to the second product wafer using a permanent bond between a first product wafer second surface and a second product wafer first surface. In exemplary embodiments, at least one processing step is performed on the first product wafer after the first temporary carrier wafer is bonded to the first product wafer before the second product wafer is permanently bonded to the first product wafer.
Abstract:
A glass wafer assembly is disclosed. In one aspect, the glass wafer assembly comprises a first glass wafer and a second glass wafer that are bonded by a conductive sealing ring. The conductive sealing ring defines a substantially hermetically sealed cavity between the first glass wafer and the second glass wafer. In another aspect, the first glass wafer and the second glass wafer each comprise a plurality of conductive through glass vias (TGVs). At least one active device is disposed in the substantially hermetically sealed cavity and can be electrically coupled to a conductive TGV in the first glass wafer and a conductive TGV in the second glass wafer to enable flexible electrical routing through the glass wafer assembly without wire bonding and over molding. As a result, it is possible to reduce footprint and height while improving radio frequency (RF) performance of the glass wafer assembly.
Abstract:
A method for processing product wafers using carrier substrates is disclosed. The method includes a step of bonding a first carrier wafer to a first product wafer using a first temporary adhesion layer between a first carrier wafer surface and a first product wafer first surface. Another step includes bonding a second carrier wafer to a second product wafer using a second temporary adhesion layer between a second carrier wafer surface and a second product wafer surface. Another step includes bonding the first product wafer to the second product wafer using a permanent bond between a first product wafer second surface and a second product wafer first surface. In exemplary embodiments, at least one processing step is performed on the first product wafer after the first temporary carrier wafer is bonded to the first product wafer before the second product wafer is permanently bonded to the first product wafer.
Abstract:
The present disclosure relates to a substrate structure with a buried dielectric layer for post-processing silicon handle elimination. The substrate structure includes a silicon handle layer, a first silicon oxide layer over the silicon handle layer, a buried dielectric layer over the first silicon oxide layer, where the buried dielectric layer is not formed from silicon oxide, a second silicon oxide layer over the buried dielectric layer, and a silicon epitaxy layer over the second silicon oxide layer. The buried dielectric layer provides extremely selective etch stop characteristics with respect to etching chemistries for silicon and silicon oxide.
Abstract:
The present disclosure relates to a silicon-on-insulator (SOI) substrate structure with a buried dielectric layer for radio frequency (RF) complementary metal-oxide semiconductor (CMOS) switch fabrications. The buried dielectric layer suppresses back-gate transistors in the RF CMOS switches fabricated on the SOI substrate structure. The SOI substrate structure includes a silicon handle layer, a silicon oxide layer over the silicon handle layer, a buried dielectric layer over the silicon oxide layer, and a silicon epitaxy layer directly over the buried dielectric layer.
Abstract:
The present disclosure relates to a silicon-on-insulator (SOI) substrate structure with a buried dielectric layer for radio frequency (RF) complementary metal-oxide semiconductor (CMOS) switch fabrications. The buried dielectric layer suppresses back-gate transistors in the RF CMOS switches fabricated on the SOI substrate structure. The SOI substrate structure includes a silicon handle layer, a silicon oxide layer over the silicon handle layer, a buried dielectric layer over the silicon oxide layer, and a silicon epitaxy layer directly over the buried dielectric layer.
Abstract:
A glass wafer assembly is disclosed. In one aspect, the glass wafer assembly comprises a first glass wafer and a second glass wafer that are bonded by a conductive sealing ring. The conductive sealing ring defines a substantially hermetically sealed cavity between the first glass wafer and the second glass wafer. In another aspect, the first glass wafer and the second glass wafer each comprise a plurality of conductive through glass vias (TGVs). At least one active device is disposed in the substantially hermetically sealed cavity and can be electrically coupled to a conductive TGV in the first glass wafer and a conductive TGV in the second glass wafer to enable flexible electrical routing through the glass wafer assembly without wire bonding and over molding. As a result, it is possible to reduce footprint and height while improving radio frequency (RF) performance of the glass wafer assembly.
Abstract:
Hermetically sealed through vias (TVs) are disclosed. In one aspect, an hourglass TV is first created in a substrate. The hourglass TV has a waist opening. A conductive conformal coating covers at least a portion of an interior wall of the hourglass TV. The conductive conformal coating also completely fills the waist opening to provide a hermetic seal between an upper opening and a lower opening of the hourglass TV, thus creating the hermetically sealed TV. The combination of the hourglass shape, which provides a narrowing waist, and using the conformal coating process, facilitates the natural accumulation of the conductive conformal coating material in and about the waist opening. Creating hermetically sealed TVs in this manner leads to lower costs, shortened process and plating times, and increased production throughput compared to conventional processes for creating the hermetically sealed TVs in substrates.