Abstract:
An AC-to-DC power converter with a BJT as a power switch can set a base current of the BJT by a current setting resistor which is in the outside of a control integrated circuit. Since an output current and a recovery current of the BJT are injected into a sensing resistor, the AC-to-DC power converter can correctly detect an inductor current thereof from the sensing resistor.
Abstract:
A frequency jittering control circuit for a PFM power supply includes a pulse frequency modulator to generate a frequency jittering control signal to switch a power switch to generate an output voltage. The frequency jittering control circuit jitters an input signal or an on-time or off-time of the pulse frequency modulator to jitter the switching frequency of the power switch to thereby improve EMI issue.
Abstract:
A mixed mode compensation circuit and method for a power converter generate a digital signal according to a reference value and a feedback signal which is related to the output voltage of the power converter, convert the digital signal into a first analog signal, offset the first analog signal with a variable offset value to generate a second analog signal, and filter out high-frequency components of the second analog signal to generate a third analog signal for stable output voltage of the power converter. The mixed mode compensation does not require large capacitors, and thus the circuit can be integrated into an integrated circuit.
Abstract:
A control circuit for a power converter includes a shared pin, a driving circuit, a current source, a sampling circuit, and a signal processing circuit. The shared pin is coupled with an output end of the power converter through a resistor. The driving circuit conducts a switch of the power converter. The current source provides a current to the resistor through the shared pin. The sampling circuit samples the signal on the shared pin for generating a first sampling value and a second sampling value. The signal processing circuit calculates a first difference between the first sampling value and a first reference value, and a second difference between the second sampling value and a second reference value. When the difference between the first difference and the second difference is less than a predetermined value, the signal processing circuit may therefore configure the conduction time or frequency of the switch.
Abstract:
An LED control device for configuring a phase-cut dimming system includes an LED and a switch. The LED control device configures the conduction status of the switch so as to supply power to the LED according to an input signal. The LED control device further detects whether the input signal is phase-cut. When the input signal is phase-cut, the LED control device stores the signal values of the internal circuits. Afterward, when the input signal is not phase-cut, the LED control device restores the stored signal values so that the internal circuits may resume to the previous operation status rapidly.
Abstract:
A control circuit for a power converter is disclosed, having a shared pin, a driving circuit, a current source, a sampling circuit, and a signal processing circuit. The shared pin is used for coupling with an output end of the power converter through a resistor. The driving circuit is used for conducting a switch of the power converter. The current source provides a current to the resistor through the shared pin. The sampling circuit samples the signal on the shared pin for generating a first sampling value and a second sampling value. When the difference between the first sampling value and the second sampling value is less than a predetermined value, the signal processing circuit configures the driving circuit to adjust at least one of the conduction time and the conduction frequency of the switch according to an output signal of the power converter received from the shared pin.
Abstract:
A driver circuit of a LED luminance device includes: a signal pin; a determining circuit for determining the magnitude of an input signal; an indication signal generating circuit for outputting an indication signal to the signal pin according to the determining result of the determining circuit; an alignment signal generating circuit for generating an alignment signal when triggered by a predetermined edge of a signal at the signal pin; an indication signal detecting circuit for detecting the signal at the signal pin to generate a detection signal; and a control signal generating circuit for generating multiple control signals according to the detection signal to respectively control multiple switching elements in parallel connection with multiple LED devices when triggered by the alignment signal.
Abstract:
A linear LED driver includes a voltage supply terminal providing a driving voltage, at least one first transistor, each of which has an input terminal coupled to a respective LED, and a bleeder circuit. When the voltage of the output terminal of each of the at least one first transistor is lower than a first threshold and a power voltage is higher than a second threshold, the bleeder circuit will generate a bleeder current to discharge the voltage supply terminal so as to prevent the LEDs from flickering. The bleeder circuit detects the voltage of the output terminal of each of the at least one first transistor. Therefore, whether the LEDs are lighted up can be confirmed so that the bleeder current can be provided at properly time point.
Abstract:
An apparatus and a method for implementing a multiple function pin in a boundary conduction mode power supply, uses a same pin to switch a power switch and to achieve zero current detection to reduce pin count and save cost of a control integrated circuit. A first voltage is applied to the multiple function pin to turn on the power switch, and then a second voltage is applied to the multiple function pin after the power switch has been turned on for a first time, to thereby turn off the power switch. After the power switch has been turned off for a second time, a third voltage is applied to the multiple function pin keep the power switch off. Preferably, a tristate output driver is used to provide the first and second voltages, and a clamping circuit is used to provide the third voltage.
Abstract:
A control circuit for a power converter has a current source, a sampling circuit, a signal processing circuit, a driving circuit, and a shared pin. The shared pin is used for coupling with a resistor and a switch. The current source, coupled with the shared pin, provides a current through the shared pin to the resistor in a first period. The sampling circuit, coupled with the shared pin, samples signals on the shared pin for generating a first sampling value and a second sampling value. The signal processing circuit, coupled with the sampling circuit, compares the first sampling value and the second sampling value. The driving circuit generates driving signals for conducting the switch. When the difference of the first sampling value and the second sampling value is less than a predetermined value, the signal processing circuit configures the driving circuit to intermittently conduct the switch in a second period.