摘要:
A device for selectively detecting specific wavelength components of a light beam includes a spectral spreading element for spectrally spreading the light beam, and a detector array arranged downstream of the element. The detector array includes light-insensitive regions and light-sensitive regions. The element and the detector array are matched to each other so that selectable wavelength components of the light beam hit the light-insensitive regions and remaining wavelength components of the light beam hit the light-sensitive regions.
摘要:
An apparatus for detecting photons of a light beam emanating from a spatially limited source includes a detection device having a plurality of detectors forming a three-dimensional array with semitranslucent EMCCDs disposed one behind another. A light splitting device is disposed in a path of rays of the light beam for splitting the light beam so as to distribute the photons over the detectors for detection.
摘要:
A device for selectively detecting specific wavelength components of a light beam includes a spectral spreading element for spectrally spreading the light beam, and a detector array arranged downstream of the element. The detector array includes light-insensitive regions and light-sensitive regions. The element and the detector array are matched to each other so that selectable wavelength components of the light beam hit the light-insensitive regions and remaining wavelength components of the light beam hit the light-sensitive regions.
摘要:
An apparatus for detecting photons of a light beam emanating from a spatially limited source includes a detection device having a plurality of detectors forming a three-dimensional array with semitranslucent EMCCDs disposed one behind another. A light splitting device is disposed in a path of rays of the light beam for splitting the light beam so as to distribute the photons over the detectors for detection.
摘要:
An optical arrangement having an optical assembly (1) for generating an intermediate image (2) in a beam path is configured and further developed such that an optical element (3) having a plurality of optical waveguides (4) is arranged in the beam bath after the intermediate image (2) to enable the imaging of the intermediate image (2) in a plane on a zone-by-zone or point-by-point basis. Further, a microscope exhibiting such an optical arrangement is specified.
摘要:
A device for generating a laser light beam includes a module. The module includes at least one laser light source, and a mechanical, an electrical and/or an optical interface defined towards an outside of the module.
摘要:
A method for separating different emission wavelengths in a scanning microscope includes scanning a specimen with an illuminating light beam by passing the illuminating light beam over the specimen using a beam deflector, and selectively applying each of a plurality of excitation wavelengths to the illuminating light beam during the scanning according to a predefinable illumination scheme. Emission light coming from the specimen is detected using a detector, the emission light including emission wavelengths corresponding to the excitation wavelengths. The detector is read out when an excitation wavelength is applied so as to provide detected signals. The detected signals are associated with the respective excitation wavelengths using the illumination scheme.
摘要:
A device for generating a laser light beam includes a module. The module includes at least one laser light source, and a mechanical, an electrical and/or an optical interface defined towards an outside of the module.
摘要:
In a method for scanning microscopy an illuminating light beam that contains at least first light of a first wavelength and second light of a second wavelength, is coded. The coded illuminating light beam is directed onto a specimen and detection light proceeding from the specimen is decoded.
摘要:
A method for separating different emission wavelengths in a scanning microscope includes scanning a specimen with an illuminating light beam by passing the illuminating light beam over the specimen using a beam deflector, and selectively applying each of a plurality of excitation wavelengths to the illuminating light beam during the scanning according to a predefinable illumination scheme. Emission light coming from the specimen is detected using a detector, the emission light including emission wavelengths corresponding to the excitation wavelengths. The detector is read out when an excitation wavelength is applied so as to provide detected signals. The detected signals are associated with the respective excitation wavelengths using the illumination scheme.