Abstract:
Memory system enabling memory mirroring in single write operations. The memory system includes a memory channel which can store duplicate copies of a data element into multiple locations in the memory channel. The multiple locations are disposed in different memory modules and have different propagation times with respect to a data signal transmitted from the memory controller. In a write operation, the relative timings of the chip select, command and address signals among the multiple locations are adjusted according to the data propagation delay. As a result, a data element can be written into the multiple locations responsive to a data signal transmitted from the memory controller in a single transmission event.
Abstract:
An integrated circuit device is disclosed. The integrated circuit device includes a semiconductor die fabricated by a front-end semiconductor process and having oppositely disposed planar surfaces. The semiconductor die is formed with semiconductor devices, power supply circuitry coupled to the semiconductor devices, decoupling capacitance circuitry, and through-vias. The through-vias include a first group of vias coupled to the power supply circuitry and a second group of vias coupled to the decoupling capacitance circuitry. Conductors are formed in a first metal layer disposed on the semiconductor die in accordance with a back-end semiconductor process. The conductors are configured to couple to the first and second groups of through-vias to establish conductive paths from the power supply circuitry to the decoupling capacitance circuitry.
Abstract:
An integrated circuit device is disclosed. The integrated circuit device includes a semiconductor die fabricated by a front-end semiconductor process and having oppositely disposed planar surfaces. The semiconductor die is formed with semiconductor devices, power supply circuitry coupled to the semiconductor devices, decoupling capacitance circuitry, and through-vias. The through-vias include a first group of vias coupled to the power supply circuitry and a second group of vias coupled to the decoupling capacitance circuitry. Conductors are formed in a first metal layer disposed on the semiconductor die in accordance with a back-end semiconductor process. The conductors are configured to couple to the first and second groups of through-vias to establish conductive paths from the power supply circuitry to the decoupling capacitance circuitry.
Abstract:
A method and system for direct memory transfers between memory modules are described that includes sending a request to a first memory module and storing the data sent on a memory bus by the first memory module into a second memory module. The direct transfer of data between the first and second memory modules reduces power consumption and increases performance.
Abstract:
A method and system for direct memory transfers between memory modules are described that includes sending a request to a first memory module and storing the data sent on a memory bus by the first memory module into a second memory module. The direct transfer of data between the first and second memory modules reduces power consumption and increases performance.
Abstract:
Memory system enabling memory mirroring in single write operations for the primary and backup data storage. The memory system utilizes a memory channel including one or more latency groups, with each latency group encompassing a number of memory modules that have the same signal timing to the controller. A primary copy and a backup copy of a data element can be written to two memory modules in the same latency group of the channel and in a single write operation. The buses of the channel may have the same trace length to each of the memory modules within a latency group.
Abstract:
An integrated circuit device is disclosed. The integrated circuit device includes a semiconductor die fabricated by a front-end semiconductor process and having oppositely disposed planar surfaces. The semiconductor die is formed with semiconductor devices, power supply circuitry coupled to the semiconductor devices, decoupling capacitance circuitry, and through-vias. The through-vias include a first group of vias coupled to the power supply circuitry and a second group of vias coupled to the decoupling capacitance circuitry. Conductors are formed in a first metal layer disposed on the semiconductor die in accordance with a back-end semiconductor process. The conductors are configured to couple to the first and second groups of through-vias to establish conductive paths from the power supply circuitry to the decoupling capacitance circuitry.
Abstract:
An integrated circuit device is disclosed. The integrated circuit device includes a semiconductor die fabricated by a front-end semiconductor process and having oppositely disposed planar surfaces. The semiconductor die is formed with semiconductor devices, power supply circuitry coupled to the semiconductor devices, decoupling capacitance circuitry, and through-vias. The through-vias include a first group of vias coupled to the power supply circuitry and a second group of vias coupled to the decoupling capacitance circuitry. Conductors are formed in a first metal layer disposed on the semiconductor die in accordance with a back-end semiconductor process. The conductors are configured to couple to the first and second groups of through-vias to establish conductive paths from the power supply circuitry to the decoupling capacitance circuitry.
Abstract:
System and method for dynamic termination control to enable use of an increased number of memory modules on a single channel. In some embodiments, six or eight DIMMs are coupled to a single channel. The dynamic termination scheme can include configurations for input bus termination (IBT) on each of the memory modules for the address bus/command bus and configurations for on-die termination (ODT) one each of the memory modules for the data bus.
Abstract:
An integrated circuit device is disclosed. The integrated circuit device includes a semiconductor die fabricated by a front-end semiconductor process and having oppositely disposed planar surfaces. The semiconductor die is formed with semiconductor devices, power supply circuitry coupled to the semiconductor devices, decoupling capacitance circuitry, and through-vias. The through-vias include a first group of vias coupled to the power supply circuitry and a second group of vias coupled to the decoupling capacitance circuitry. Conductors are formed in a first metal layer disposed on the semiconductor die in accordance with a back-end semiconductor process. The conductors are configured to couple to the first and second groups of through-vias to establish conductive paths from the power supply circuitry to the decoupling capacitance circuitry.