摘要:
This invention relates to an isolated nucleic acid fragment encoding an Mlo homolog. The invention also relates to the construction of a chimeric gene encoding all or a portion of the Mlo homolog, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the Mlo homolog in a transformed host cell.
摘要:
The invention provides isolated YABBY transcription factor nucleic acids and their encoded polypeptides. The present invention provides methods and compositions relating to altering YABBY transcription factor levels in plants. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions.
摘要:
The invention provides isolated pyruvate dehydrogenase kinase nucleic acids and their encoded polypeptides. The present invention provides methods and compositions relating to altering pyruvate dehydrogenase kinase levels in plants. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions.
摘要:
This invention relates to isolated nucleic acid fragments encondign defense response proteins. The invention also relates to the construction of chimeric genes enconding all or a substantial portion of the defense response proteins, in sense or antisense orientation, wherein expression of the chimeric genes results in production of altered levels of the defense response proteins in a transformed host cell. This invention further relates to a method of introgressing disease resistance loci into rice germplasm.
摘要:
This invention relates to an isolated nucleic acid fragment encoding a vitamin E biosynthtetic enzyme. The invention also relates to the construction of a chimeric gene encoding all or a portion of the vitamin E biosynthtetic enzyme, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the vitamin E biosynthtetic enzyme in a transformed host cell.
摘要:
This invention relates to an isolated nucleic acid fragment encoding a vitamin E biosynthtetic enzyme. The invention also relates to the construction of a chimeric gene encoding all or a portion of the vitamin E biosynthtetic enzyme, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the vitamin E biosynthtetic enzyme in a transformed host cell.
摘要:
This invention relates to isolated nucleic acid fragments encoding polypeptides involved in post-transcriptional gene silencing. The invention also relates to construction of a recombinant DNA construct encoding all or a portion of the polypeptide involved in post-transcriptional gene silencing, in sense or antisense orientation, wherein expression of the recombinant DNA construct results in production of altered levels in a transformed host cell of the the polypeptide involved in post-transcriptional gene silencing.
摘要:
This invention relates to an isolated nucleic acid fragment encoding floral development proteins, more specifically FT, TFL or Ap3 homologs. The invention also relates to the construction of a recombinant DNA construct encoding all or a portion of the floral development proteins, in sense or antisense orientation, wherein expression of the recombinant DNA construct results in production of altered levels of the FT, TFL or Ap3 homologs in a transformed host cell.
摘要:
This invention relates to an isolated nucleic acid fragment encoding floral development proteins, more specifically FT, TFL or Ap3 homologs. The invention also relates to the construction of a recombinant DNA construct encoding all or a portion of the floral development proteins, in sense or antisense orientation, wherein expression of the recombinant DNA construct results in production of altered levels of the FT, TFL or Ap3 homologs in a transformed host cell.
摘要:
This invention relates to an isolated nucleic acid fragment encoding a farnesyltransferase subunit. The invention also relates to the construction of a chimeric gene encoding all or a portion of the farnesyltransferase subunit, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the farnesyltransferase subunit in a transformed host cell.