摘要:
A method for determining a polarization state of light passed through the projection lens of a lithographic apparatus is described. Polarizing structures are disposed on an object side of the projection lens of the lithographic apparatus. By measuring light that has passed through the polarizing structures information regarding the polarization characteristics of the projection lens can be determined.
摘要:
A lithographic apparatus includes an illumination system configured to condition a radiation beam; a polarization sensor configured at least in part to couple to a reticle stage, wherein components of the reticle polarization sensor can be loaded and unloaded in the lithographic apparatus in the manner used for conventional reticles. In one configuration an active reticle tool includes a rotatable retarder configured to vary the retardation applied to polarized light received from a field point in the illumination system. In another configuration, a passive reticle tool is configured as an array of polarization sensor modules, where the amount of retardation applied to received light by fixed retarders varies according to position of the polarization sensor module. Accordingly, a plurality of retardation conditions for light received at a given field point can be measured, wherein a complete determination of a polarization state of the light at the given field point can be determined. In another configuration, the polarization sensor is configured to measure the effect of a projection lens on a polarization state of light passing through the projection lens.
摘要:
A lithographic apparatus includes an illumination system configured to condition a radiation beam; a polarization sensor configured at least in part to couple to a reticle stage, wherein components of the reticle polarization sensor can be loaded and unloaded in the lithographic apparatus in the manner used for conventional reticles. In one configuration an active reticle tool includes a rotatable retarder configured to vary the retardation applied to polarized light received from a field point in the illumination system. In another configuration, a passive reticle tool is configured as an array of polarization sensor modules, where the amount of retardation applied to received light by fixed retarders varies according to position of the polarization sensor module. Accordingly, a plurality of retardation conditions for light received at a given field point can be measured, wherein a complete determination of a polarization state of the light at the given field point can be determined. In another configuration, the polarization sensor is configured to measure the effect of a projection lens on a polarization state of light passing through the projection lens.
摘要:
A lithographic apparatus includes an illumination system configured to condition a radiation beam; a support constructed to support a patterning device, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam; a substrate table constructed to hold a substrate; a projection system configured to project the patterned radiation beam onto a target portion of the substrate; and a detector for measuring the intensity of the radiation after it has passed through the projection system. The apparatus further includes a polarization changing element, such as a quarter-wave plate, that is adjustable; and a polarization analyzer, such as a linear polarizer, wherein the polarization changing element and the polarization analyzer are arranged in order in the radiation beam path at the level at which a patterning device would be held by the support. By taking intensity measurements, using the detector, for different rotational orientations of the polarization changing element, information on the state of polarization of the radiation at the level of the patterning device can be obtained. Because the polarization analyzer is located before the projection system, the measurements are not affected by the fact that the detector is located after the projection system, such as at the level of the substrate.
摘要:
A lithographic apparatus includes an illumination system configured to condition a radiation beam; a polarization sensor configured at least in part to couple to a reticle stage, wherein components of the reticle polarization sensor can be loaded and unloaded in the lithographic apparatus in the manner used for conventional reticles. In one configuration an active reticle tool includes a rotatable retarder configured to vary the retardation applied to polarized light received from a field point in the illumination system. In another configuration, a passive reticle tool is configured as an array of polarization sensor modules, where the amount of retardation applied to received light by fixed retarders varies according to position of the polarization sensor module. Accordingly, a plurality of retardation conditions for light received at a given field point can be measured, wherein a complete determination of a polarization state of the light at the given field point can be determined. In another configuration, the polarization sensor is configured to measure the effect of a projection lens on a polarization state of light passing through the projection lens.
摘要:
In an immersion lithographic apparatus, a final element is disclosed having, on a surface nearest the substrate, a layer bonded to the surface and having an edge barrier, of the same material as the layer, extending from the layer away from the substrate to shield the final element from a liquid. In an embodiment, the final element is attached to the apparatus via the layer and/or edge barrier, which may be made of a material with a coefficient of thermal expansion lower than the coefficient of thermal expansion of the final element.
摘要:
An aberration correction device useable in lithography comprises two elements, at least one of which is relatively rotatable to the other about, for example, an optical axis. One surface of each element has an aspheric form describable by higher Zernike polynomials. When the two surfaces are rotationally aligned, the device has the optical effect of a plane plate. If there is a small relative rotation of the two elements the effect of the device is a phase shift describable by the derivative of the aspheric form. The correction device may be used to correct aberrations caused by lens heating, especially with illumination modes and pattern types resulting in strong off-axis localized pupil filling in the projection system.
摘要:
An aberration correction device useable in lithography comprises two elements, at least one of which is relatively rotatable to the other about, for example, an optical axis. One surface of each element has an aspheric form describable by higher Zernike polynomials. When the two surfaces are rotationally aligned, the device has the optical effect of a plane plate. If there is a small relative rotation of the two elements the effect of the device is a phase shift describable by the derivative of the aspheric form. The correction device may be used to correct aberrations caused by lens heating, especially with illumination modes and pattern types resulting in strong off-axis localized pupil filling in the projection system.
摘要:
An aberration correction device useable in lithography comprises two elements, at least one of which is relatively rotatable to the other about, for example, an optical axis. One surface of each element has an aspheric form describable by higher Zernike polynomials. When the two surfaces are rotationally aligned, the device has the optical effect of a plane plate. If there is a small relative rotation of the two elements the effect of the device is a phase shift describable by the derivative of the aspheric form. The correction device may be used to correct aberrations caused by lens heating, especially with illumination modes and pattern types resulting in strong off-axis localized pupil filling in the projection system.
摘要:
A method of reducing a wave front aberration is provided for a lithographic process whereby the reducing is based on the selected pattern to be printed and the selected illumination mode used for exposure. Wave front aberrations of a projection system of a lithographic apparatus are measured and reduced by calculating adjustments of optical elements of the projection system and applying the calculated adjustments to the projection system. The calculation of adjustments is based on information on a spatial distribution of radiant intensity in a pupil of the projection system as present during exposing the radiation sensitive layer, and is limited to aberrations in projection lens pupil areas of relative high radiant flux.