Abstract:
The semiconductor device has a silicon layer (SOI layer) (12) formed through a silicon oxide film (11) on a support substrate (10). A transistor (T1) is formed in the SOI layer (12). The wiring (17a) is connected with a source of the transistor (T1) through a contact plug (15a). A back metal (18) is formed on an under surface (back surface) of the support substrate (10) and said back metal (18) is connected with the wiring (17a) through a heat radiating plug (16). The contact plug (15a), the heat radiating plug (16) the wiring (17a) and the back metal (18) is made of a metal such as aluminum, tungsten and so on which has a higher thermal conductivity than that of the silicon oxide film (11) and the support substrate (10).
Abstract:
A semiconductor wafer includes an oxide film above a silicon layer, and a porous silicon layer which is located above the oxide film and serves as a gettering layer. Gettering of impurities from a silicon layer is not interrupted by the oxide film since the porous silicon layer is placed above the oxide film. The semiconductor wafer having the structure above can be produced by a bonding method. Bonding strength relative to the oxide film is ensured by placing a growth silicon layer between the oxide film and the porous silicon layer, compared with the case in which the oxide film and the porous silicon layer are directly bonded.
Abstract:
It is an object to provide a semiconductor device having an SOI structure in which an electric potential of a body region in an element formation region isolated by a partial isolation region can be fixed with a high stability. A MOS transistor comprising a source region (51), a drain region (61) and an H gate electrode (71) is formed in an element formation region isolated by a partial oxide film (31). The H gate electrode (71) electrically isolates a body region (13) formed in a gate width W direction adjacently to the source region (51) and the drain region (61) from the drain region (61) and the source region (51) through nullInull in a transverse direction (a vertical direction in the drawing), a central null-null functions as a gate electrode of an original MOS transistor.
Abstract:
Provided is an MOS transistor capable of reducing gate overlap capacitance without decreasing the driving current of the MOS transistor. Specifically, a double-angle smile oxidation structure is obtainable by curving the side surface of a gate electrode (22) so as to widen upwardly, and thickening the edge portion of a gate oxide film (21) by re-oxidation. The impurity concentration of a source/drain layer under the double-angle smile oxidation structure (a region around point B) is set to the range of 4null1018 cmnull3null40%.
Abstract translation:提供了能够减小栅极重叠电容而不降低MOS晶体管的驱动电流的MOS晶体管。 具体地说,通过使栅电极(22)的侧面弯曲以向上变宽,通过再氧化来增厚栅极氧化膜(21)的边缘部分,可获得双角度微笑氧化结构。 在双角度微笑氧化结构(点B附近的区域)处的源极/漏极层的杂质浓度被设定为4×10 18 cm -3±40%的范围。
Abstract:
A semiconductor device and its manufacturing method are provided which can properly avoid reduction of isolation breakdown voltage without involving adverse effects like an increase in junction capacitance. Impurity-introduced regions (11) are formed after a silicon layer (3) has been thinned through formation of recesses (14). Therefore n-type impurities are not implanted into the portions of the p-type silicon layer (3) that are located between the bottoms of element isolation insulating films (5) and the top surface of a BOX layer (2), which avoids reduction of isolation breakdown voltage. Furthermore, since the impurity-introduced regions (11) are formed to reach the upper surface of the BOX layer (2), the junction capacitance of source/drain regions (12) is not increased.
Abstract:
A semiconductor device which achieves reductions in malfunctions and operating characteristic variations by reducing the gain of a parasitic bipolar transistor, and a method of manufacturing the same are provided. A silicon oxide film (6) is formed partially on the upper surface of a silicon layer (3). A gate electrode (7) of polysilicon is formed partially on the silicon oxide film (6). A portion of the silicon oxide film (6) underlying the gate electrode (7) functions as a gate insulation film. A silicon nitride film (9) is formed on each side surface of the gate electrode (7), with a silicon oxide film (8) therebetween. The silicon oxide film (8) and the silicon nitride film (9) are formed on the silicon oxide film (6). The width (W1) of the silicon oxide film (8) in a direction of the gate length is greater than the thickness (T1) of the silicon oxide film (6).
Abstract:
There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a crystal direction of a support substrate (1) with a crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the crystal direction of the SOI layer (3). Since hole mobility is higher in the crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
Abstract:
It is an object to provide a semiconductor device in which a resistance value of a resistor formed by a silicon film is changed with difficulty. A resistor (31) is formed by an amorphous silicon film, and silicides (32a) and (32b) are formed in connecting portions of contact plugs (5a) and (5b) in a surface portion thereof. Since the resistor (31) is the amorphous silicon, a hydrogen atom is bonded with more difficulty as compared with the case in which polycrystalline silicon is used for a material of the resistor. Thus, it is possible to obtain a semiconductor device in which a resistance value of the resistor formed by the silicon film is changed with difficulty. Moreover, the suicides (32a) and (32b) are formed in the connecting portions of the contact plugs (5a) and (5b). Therefore, when contact holes for the contact plugs (5a) and (5b) are to be formed on a first interlayer insulating film (4a) by etching, the resistor (31) is etched with difficulty. Consequently, it is possible to obtain a semiconductor device in which the resistance value of the resistor (31) is changed with more difficulty.