Abstract:
A semiconductor includes first quantum dots and second quantum dots of a lesser amount, which are dispersed throughout the first quantum dots. The second quantum dots have a different size or composition than the first quantum dots such that the second quantum dots have a first exciton peak wavelength longer than a first exciton peak wavelength of the first quantum dots. The quantum dot layer includes a valence band, a conduction band, and an intermediate band having an energy level within a bandgap between the valence band and the conduction band. The quantum dots may be solution processed. The semiconductor may be utilized to form an electronic heterojunction, and optoelectronic devices including the electronic heterojunction.
Abstract:
Integrated upconversion devices capable of upconverting incident visible to short wavelength infrared photons to visible photons are disclosed. The device may include a quantum dot-based photodiode and a light-emitting diode. The device may further include a gain element such as a thin-film transistor.
Abstract:
A corrosion sensor system includes one or more corrosion sensors embedded in a coating material such as an anti-corrosion coating material. Each corrosion sensor may include a resonator disposed on a dielectric substrate, and has a resonant frequency in a radio frequency (RF) range or an infrared (IR) range, and is configured for interacting with an RF or IR excitation signal to produce an RF or IR measurement signal. The corrosion sensor system may be applied to an object for which corrosion is to be monitored. A corrosion detection system includes a data acquisition system that transmits the excitation signal to the corrosion sensor, and receives the measurement signal from the corrosion sensor for analysis to determine whether corrosion has occurred.
Abstract:
A photodetector includes one or more photodiodes and a signal processing circuit. Each photodiode includes a transparent first electrode, a second electrode, and a heterojunction interposed between the first electrode and the second electrode. Each heterojunction includes a quantum dot layer and a fullerene layer disposed directly on the quantum dot layer. The signal processing circuit is in signal communication each the second electrode. The photodetector may be responsive to wavelengths in the infrared, visible, and/or ultraviolet ranges. The quantum dot layer may be treated with a chemistry that increases the charge carrier mobility of the quantum dot layer.
Abstract:
A temperature sensor includes a photon source, a fluorescent element and a photodetector. The fluorescent element includes a temperature-insensitive first fluorophore and a temperature-sensitive second fluorophore. The photodetector includes a first photosensor exhibiting a first spectral responsivity and a second photosensor exhibiting a second spectral responsivity. To measure a temperature of a surface, the fluorescent element may be placed adjacent to the surface and irradiated with a photon beam. First photons emitted from the first fluorophore and second photons emitted from the second fluorophore are collected. The first and second photons may be transmitted as a single dichromatic beam to the photodetector. The photosensors generate two different photodetector output signals, the ratio of which may be correlated to temperature.
Abstract:
Integrated upconversion devices capable of upconverting incident visible to short wavelength infrared photons to visible photons are disclosed. The device may include a quantum dot-based photodiode and a light-emitting diode. The device may further include a gain element such as a thin-film transistor.