摘要:
Improved electrical transient blocking is provided with a transient blocking unit (TBU) having a partial disconnect capability. A TBU is an arrangement of voltage controlled switches that normally conducts, but switches to a disconnected state in response to an above-threshold input transient. Partial disconnection improves the power handling capability of a TBU by preventing thermal damage to the TBU. Partial TBU disconnection can be implemented to keep power dissipation in the TBU below a predetermined level Pmax, thereby avoiding thermal damage to the TBU by keeping the TBU temperature below a temperature limit Tmax. Alternatively, partial TBU disconnection can be implemented to keep TBU temperature below Tmax using direct temperature sensing and feedback.
摘要:
An apparatus and a method for uni-directional and bi-directional transient blocking. The uni-directional apparatus has a depletion mode n-channel device at its input and a normally closed relay, e.g., a micro-electro-mechanical (MEM) relay, interconnected with the depletion mode n-channel device and the input in such a way that at a predetermined current value the transient causes the normally closed relay to switch into an open state and apply a bias voltage Vn on the depletion mode n-channel device that is sufficiently high to switch it “off” thus block the transient. An analogous arrangement at the output taking advantage of the same or a second relay renders the apparatus bi-directional. The structure of the apparatus and the method of operation ensure a reliable and repeatable trip current Itrip and render the apparatus very robust and feasible for low-cost manufacture.
摘要:
This invention relates to achieving high breakdown voltage and low on-resistance in semiconductor devices that have top, intermediate and bottom regions with a controllable current path traversing any of these regions. The device has an insulating trench that is coextensive with the top and intermediate regions and girds these regions from at least one side and preferably from both or all sides. A series capacitive structure with a biased top element and a number of floating elements is disposed in the insulating trench, and the intermediate region is endowed with a capacitive property that is chosen to establish a capacitive interaction or coupling between the series capacitive structure and the intermediate region so that the breakdown voltage VBD is maximized and on-resistance is minimized. A second series capacitive structure disposed in a second insulating trench can be employed to terminate the device.
摘要:
An apparatus and method for temperature-dependent transient blocking employing a transient blocking unit (TBU) that uses at least one depletion mode n-channel device interconnected with at least one depletion mode p-channel device. The interconnection is performed such that a transient alters a bias voltage Vp of the p-channel device and a bias voltage Vn of the n-channel device in concert to effectuate their mutual switch off to block the transient. The apparatus has a temperature control unit that is in communication with the TBU and adjusts at least one of the bias voltages Vp, Vn in response to a sensed temperature Ts, thereby enabling the apparatus to also respond to over-temperature. In some embodiments the p-channel device is replaced with a positive temperature coefficient thermistor (PTC). The temperature control unit can use any suitable circuit element, including, among other a PTC, resistor, negative temperature coefficient element, positive temperature coefficient element, transistor, diode.
摘要翻译:一种采用使用与至少一个耗尽型p沟道器件互连的至少一个耗尽型n沟道器件的瞬态阻塞单元(TBU)的温度依赖性瞬态阻塞的装置和方法。 执行互连,使得瞬态改变p沟道器件的偏置电压V SUB p N和N沟道器件的偏置电压V N n N一致地实现 他们的相互关闭来阻止瞬态。 该装置具有与TBU通信的温度控制单元,并响应于感测到的温度T 1调整至少一个偏置电压V SUB,V SUB, 从而使得设备也能够响应过温。 在一些实施例中,用正温度系数热敏电阻(PTC)代替p沟道器件。 温度控制单元可以使用任何合适的电路元件,包括PTC,电阻器,负温度系数元件,正温度系数元件,晶体管,二极管等。
摘要:
An apparatus and method for high-voltage transient blocking employing a transient blocking unit (TBU) that has at least one depletion mode n-channel device interconnected with at least one depletion mode p-channel device such that a transient alters a bias voltage Vp of the p-channel device and a bias voltage Vn of the n-channel device in concert. Specifically, the bias voltages are altered such that the p-channel device and n-channel device mutually switch off to block the transient. The depletion mode n-channel device employs a set of cascaded low-voltage depletion mode field effect transistors (FETs) such as metal-oxide-silicon field effect transistors (MOSFETs) connected source-to-drain to achieve the desired high-voltage operation of the TBU.
摘要翻译:一种使用具有与至少一个耗尽型p沟道器件互连的至少一个耗尽型n沟道器件的瞬态阻断单元(TBU)的装置和方法,使得瞬态改变偏置电压V' p沟道器件的SUB> p SUB>和n沟道器件的偏置电压V N n N一致。 具体地,改变偏置电压,使得p沟道器件和n沟道器件相互切断以阻止瞬变。 耗尽型n沟道器件采用一组级联的低压耗尽型场效应晶体管(FET),例如连接源极到漏极的金属氧化物 - 硅场效应晶体管(MOSFET),以实现所需的高电压工作 的TBU。
摘要:
A transient blocking unit (TBU) with integrated over-current protection and discrete over-voltage protection. In one example embodiment, the present innovations are embodied as a unit for protecting a circuit from high voltage and high current, comprising a core transient blocking unit with at least one high voltage device wherein the core transient blocking unit is integrated, and wherein the at least one high voltage device is discrete.
摘要:
A transient blocking unit (TBU) having improved damage resistance is provided. A TBU includes two or more depletion mode transistors arranged to provide a low series impedance in normal operation and a high series impedance when the input current exceeds a predetermined threshold. At least one of the TBU transistors is a protecting device having a shunt circuit element connected in parallel with its channel. When the TBU is in its high impedance state, the shunt circuit element provides a current path, thereby decreasing terminal voltages on at least one of the TBU transistors. The shunt element can be a discrete or integrated resistor, a current source including a transistor, or an appropriately engineered device parasitic.
摘要:
An apparatus and method for enhanced transient blocking employing a transient blocking unit (TBU) that uses at least one depletion mode n-channel device interconnected with at least one depletion mode p-channel device. The interconnection is performed such that a transient alters a bias voltage Vp of the p-channel device and a bias voltage Vn of the n-channel device such that the p- and n-channel devices mutually switch off to block the transient. The apparatus has an enhancer circuit for applying an enhancement bias to a gate terminal of at least one of the depletion mode n-channel devices of the TBU to reduce a total resistance Rtot of the apparatus. Alternatively, the apparatus has an enhancement mode NMOS transistor and a TBU connected thereto to help provide an enhancement bias to a gate terminal of the enhancement mode NMOS.
摘要翻译:一种用于增强瞬态阻塞的装置和方法,其采用使用与至少一个耗尽型p沟道器件互连的至少一个耗尽型n沟道器件的瞬态阻塞单元(TBU)。 执行互连,使得瞬态改变p沟道器件的偏置电压V P和N沟道器件的偏置电压V N n N,使得p - 和n通道设备相互关闭以阻止瞬态。 该装置具有增强器电路,用于向TBU中的至少一个耗尽型n沟道器件的栅极端子施加增强偏置,以减小器件的总电阻R tht。 或者,该装置具有增强型NMOS晶体管和与其连接的TBU,以帮助向增强型NMOS的栅极端提供增强偏置。
摘要:
A TBU system that includes a TBU combined with control and monitoring features. For example, in one embodiment, TBU elements are combined with a status indication switch or indicator. In another embodiment, TBU elements are combined with event logging for over voltage conditions, over current conditions, including an indication of when the event occurred and an amount of energy that was let through.
摘要:
A method for through active-silicon via integration is provided. The method comprises forming an electrical device in a handle wafer. The method also comprises forming an isolation layer over the handle wafer and the electrical device and joining an active layer to the isolation layer. Further, the method comprises forming at least one trench through the active layer and the isolation layer to expose a portion of the handle wafer and depositing an electrically conductive material in the at least one trench, the electrically conductive material providing an electrical connection to the electrical device through the active layer.